You should be aware of the following points when using the
FEDERATED
storage engine:
FEDERATED
tables may be replicated to other
slaves, but you must ensure that the slave servers are able to
use the user/password combination that is defined in the
CONNECTION
string (or the row in the
mysql.servers
table) to connect to the
remote server.
The following items indicate features that the
FEDERATED
storage engine does and does not
support:
The remote server must be a MySQL server.
The remote table that a FEDERATED
table
points to must exist before you try to
access the table through the FEDERATED
table.
It is possible for one FEDERATED
table to
point to another, but you must be careful not to create a
loop.
A FEDERATED
table does not support indexes
per se. Because access to the table is handled remotely, it is
the remote table that supports the indexes. Care should be
taken when creating a FEDERATED
table since
the index definition from an equivalent
MyISAM
or other table may not be supported.
For example, creating a FEDERATED
table
with an index prefix on
VARCHAR
,
TEXT
or
BLOB
columns will fail. The
following definition in MyISAM
is valid:
CREATE TABLE `T1`(`A` VARCHAR(100),UNIQUE KEY(`A`(30))) ENGINE=MYISAM;
The key prefix in this example is incompatible with the
FEDERATED
engine, and the equivalent
statement will fail:
CREATE TABLE `T1`(`A` VARCHAR(100),UNIQUE KEY(`A`(30))) ENGINE=FEDERATED CONNECTION='MYSQL://127.0.0.1:3306/TEST/T1';
If possible, you should try to separate the column and index definition when creating tables on both the remote server and the local server to avoid these index issues.
Internally, the implementation uses
SELECT
,
INSERT
,
UPDATE
, and
DELETE
, but not
HANDLER
.
The FEDERATED
storage engine supports
SELECT
,
INSERT
,
UPDATE
,
DELETE
,
TRUNCATE TABLE
, and indexes. It
does not support ALTER TABLE
,
or any Data Definition Language statements that directly
affect the structure of the table, other than
DROP TABLE
. The current
implementation does not use prepared statements.
FEDERATED
accepts
INSERT
... ON DUPLICATE KEY UPDATE
statements, but if a
duplicate-key violation occurs, the statement fails with an
error.
Performance on a FEDERATED
table when
performing bulk inserts (for example, on a
INSERT INTO ...
SELECT ...
statement) is slower than with other
table types because each selected row is treated as an
individual INSERT
statement on
the FEDERATED
table.
Transactions are not supported.
FEDERATED
performs bulk-insert handling
such that multiple rows are sent to the remote table in a
batch. This provides a performance improvement and enables the
remote table to perform improvement. Also, if the remote table
is transactional, it enables the remote storage engine to
perform statement rollback properly should an error occur.
This capability has the following limitations:
The size of the insert cannot exceed the maximum packet size between servers. If the insert exceeds this size, it is broken into multiple packets and the rollback problem can occur.
Bulk-insert handling does not occur for
INSERT
... ON DUPLICATE KEY UPDATE
.
There is no way for the FEDERATED
engine to
know if the remote table has changed. The reason for this is
that this table must work like a data file that would never be
written to by anything other than the database system. The
integrity of the data in the local table could be breached if
there was any change to the remote database.
When using a CONNECTION
string, you cannot
use an '@' character in the password. You can get round this
limitation by using the CREATE
SERVER
statement to create a server connection.
The insert_id
and
timestamp
options are not
propagated to the data provider.
Any DROP TABLE
statement issued
against a FEDERATED
table drops only the
local table, not the remote table.
FEDERATED
tables do not work with the query
cache.
User-defined partitioning is not supported for
FEDERATED
tables.
User Comments
There are issues regarding performance/stability that should be considered prior to the usage of the federated engine in a production environment, for example -
It's 100 percent a storage engine. For queries that need full table scans (because there isn't an index available), the server will ask for all table rows from the storage engine, and filter the relevant ones in the server level. With federated, this means the whole table will be passed over the network to the requesting server, and only then the relevant rows will be filtered out. Besides bad performance and network overload, this could easily lead to a server crash if the table is big, as it stores all this data in memory, in some buffer of it's own. For example, if you retrieve a table that's 4 gigs of data, and the requesting server has 2 or 4 gigs of RAM, in a very short while you'll start swapping like crazy, and if you run out of swap, OS will hang.
Also note it doesn't respect a LIMIT clause. It will pass the whole table over the network even if you request only 1 row.
Add your own comment.