
ne
A nice editor

Version 2.1

by Sebastiano Vigna and Todd M. Lewis

Copyright c© 1993-1998 Sebastiano Vigna
Copyright c© 1999-2010 Todd M. Lewis and Sebastiano Vigna

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice
and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for
verbatim copying, provided that the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the
above conditions for modified versions, except that this permission notice may be stated in a translation
approved by the Free Software Foundation.

Chapter 1: Introduction 1

1 Introduction

ne is a full screen text editor forUN* X (or, more precisely, forPOSIX: see Chapter 7 [Motivations and
Design], page 57). I came to the decision to write such an editor after getting completely sick ofvi , both
from a feature and user interface point of view. I needed an editor that I could use through atelnet

connection or a phone line and that wouldn’t fire off a full-blown LITHP1 operating system just to do
some editing.

A concise overview of the main features follows:

• three user interfaces: control keystrokes, command line, and menus; keystrokes and menus are
completely configurable;

• syntax highlighting;

• full support for UTF-8 files, including multiple-column characters;

• the number of documents and clips, the dimensions of the display, and the file/line lengths are
limited only by the integer size of the machine;

• simple scripting language where scripts can be generatedvia an idiotproof record/play method;

• unlimited undo/redo capability (can be disabled with a command);

• automatic preferences system based on the extension of the file name being edited;

• automatic completion of prefixes using words in your documents as dictionary;

• a file requester with completion features for easy file retrieval;

• extended regular expression search and replaceà laemacs andvi ;

• a very compact memory model—you can easily load and modify very large files;

• editing of binary files.

1 This otherwise unremarkable language is distinguished by the absence of an ‘s ’ in its character set; users must substitute
‘ th ’. LITHP is said to be useful in protheththing lithtth.

2 ne ’s manual

Chapter 2: Basics 3

2 Basics

Simple things should be simple. Complex things should be possible. (Alan Kay)

ne ’s user interface is essentially a compromise between the limits of character driven terminals and
the power of GUIs. Whilereal editing is done without ever touching a mouse, it is also truethat editing
should be doable without ever touching a manual. These two conflicting goals can be accommodated
easily in a single program if we can offer a series of interfaces that allow for differentiated use.

In other words, it is unlikely that anne wizard will ever have to activate a menu, but to become an
expert user you just have to use the menus enough to learn by heart the most important keystrokes. A
good manual is always invaluable when one comes to configuration and esoteric features, but few users
will ever need to changene ’s menus or key bindings.

Another important thing is that powerful features should always be accessible, at least in part, to every
user. The average user should be able to record his actions, replay them, and save them in a humanly
readable format for further use and editing.

In the following sections we shall take a quick tour ofne ’s features.

2.1 Terminology
In this section we explain and contrast some of the termsne uses. Understanding these distinctions will
go a long way towards making the rest of this manual make sense.

A file is a group of bytes stored on disk. This may seem rather obvious, but the important distinction
here is thatne does not edit files; it editsdocuments.

A documentis whatne calls one of the “text thingies” that you can edit. It is a sequence of lines of
text in the computer’s memory—not on disk. Documents can be created, edited, saved in files, loaded
from files, discarded,et cetera. When a document is loaded from or saved to a file, it remains associated
with that file by name until the document is either closed or saved to a different file. Interactions between
documents and files are handled by the commands under the ‘File ’ menu. The ‘Documents ’ menu
commands only deal with documents. See Section 3.7 [Menus], page 15.

Internally, ne holds its documents inbuffers. A buffer is a chunk of memory in whichne holds
something. For example, each document is held in its own buffer, as are any loaded or recorded macros,
undo records, a copy of your last deleted line of text, a copy of all your previous responses to long input,
and several other things.

2.2 Starting
To startne, just type ‘ne ’ and press RETURN. If you want to edit some specific file(s), you can put their
name(s) on the command line just after the command name, as for any UN* X command. The screen of
your terminal will be cleared (or filled with text loaded fromthe first file you specified). See Section 3.1
[Arguments], page 11 for other command line options.

Writing text is pretty straightforward: if your terminal isproperly configured, every key will (should)
do what you expect. Alphabetic characters insert text, cursor keys move the cursor, and so on. You can
use the DELETE and BACKSPACE key to perform corrections. If your keyboard has an INSERT key,
you can use it totoggle(switch from on to off, or vice versa) insert mode. In general, ne tries to squeeze
everything it can from your keyboard. Function keys and special movement keys should work flawlessly
if your terminal is properly configured. If not, complain to your system administrator. If that doesn’t
help, see Section 5.1 [Key Bindings], page 53.

At the bottom of the screen, you will see a line containing some numbers and letters. This is called
thestatus barbecause it reports to you part of the internal state of the editor. At startup, the status bar
has the following form:

4 ne ’s manual

L: 1 C: 1 12% ia----pvu-t------@A <unnamed>

(the numbers could be different, and a file name could be shownas last item instead of ‘<unnamed>’).
You probably already guessed that the numbers after ‘L: ’ and ‘C: ’ are your cursor’s line and column
numbers, respectively, whereas the percentage indicates approximately your position in the file. The
small letters represent user flags that you can turn on and off. In particular, ‘i ’ tells you that insert mode
is on, while ‘p’ tells that the automatic preferences system is activated.For a thorough explanation of the
meaning of the flags on the status bar, see Section 3.2 [The Status Bar], page 11.

Once you are accustomed to cursor movement and line editing,it is time to press F1 (the first function
key), or in case your keyboard does not have such a key, ESCAPE.Immediately, themenu barwill
appear, and the first menu will be drawn. (If you find yourself waiting for the menu to appear, you can
press ESCAPE twice in a row.) You can now move around menus and menu items by pressing the cursor
keys. Moreover, a lower case alphabetic key will move to the first item in the current menu whose name
starts with that letter, and an upper case alphabetic key will move to the first menu whose name starts
with that letter.

Moving around the menus should give you an idea of the capabilities of ne. If you want to save
your work, you should use the ‘Save As... ’ item from the ‘File ’ menu. Menus are fully discussed in
Section 3.7 [Menus], page 15. When you want to exit from the menu system, press F1 (or ESCAPE)
again. If instead you prefer to choose a command and execute it, move to the respective menu item and
press RETURN.

At the end of several menu items you will find strange symbols like ˆ A or F1. They representshortcuts
for the respective menu items. In other words, instead of activating, selecting and executing a menu item,
which can take seconds, you can simply press a couple of keys.The symbol ‘̂ ’ in front of a character
denotes the shortcut produced by the CONTROL key plus that character (we assume here that you are
perfectly aware of the usage of the CONTROL key: it is just as ifyou had to type a capital letter
with SHIFT). The descriptions of the form Fn represent instead function keys. Finally, the symbol
‘ [’ in front of a character denotes the shortcut produced by CONTROL plus META (a.k.a. ALT) plus
that character,or META plus that character, depending on your terminal emulator—you must check by
yourself. Moreover, these last bindings could not work with some terminals, in which case you can
replace them with a sequence: just press the ESCAPE key followed by the letter. A few menu items are
bound to two control sequences (just in case one does not work, or it is impractical).

Note that under certain conditions (for instance, while using ne through atelnet connection) some
of the shortcuts might not work because they are trapped by the operating system for other purposes (see
Chapter 6 [Hints and Tricks], page 55).

Finally, we have the third and last interface tone ’s features: thecommand line. If you press
CONTROL-K, or ESCAPE followed by ‘: ’ (a la vi), you will be requested to enter a command to ex-
ecute. Just press RETURN for the time being (or, if you are really interested in this topic, see Section 3.4
[The Command Line], page 14).

In the sections that follow, when explaining how to use a command we shall usually describe the
corresponding menu item. The related shortcut and command can be found on the menu item itself, and
in Section 3.7 [Menus], page 15.

2.3 Loading and Saving
The first thing to learn about an editor is how to exit.ne has aCloseDoc command that can be activated
by pressingCONTROL-Q, by choosing the ‘Close ’ item of the ‘Document ’ menu, or by activating the
command line withCONTROL-K, writing ‘cd ’ and pressing RETURN. Its effect is to close the current
document without saving any modifications. (You will be requested to confirm your choice in case the
current document has been modified since the last save.)

There is also aQuit command, which closes all the documents without saving any modifications,
and aSave&Exit (META-X) command, which saves the modified documents before quitting.

Chapter 2: Basics 5

This choice of shortcuts could surprise you. Wouldn’t ‘Quit ’ be a much better candidate for
CONTROL-Q? Well, experience shows that the most common operation is closing a document rather
than quitting the editor. If there is just one document, the two operations coincide (this is typical, for
instance, when you usene for writing electronic mail), and if there are many documents, it is far more
common to close a single document than all the existing documents.

If you want to load a file, you may use theOpen command, which can be activated by pressing
CONTROL-O, by choosing the ‘Open... ’ item of the ‘File ’ menu, or by typing it on the command line
(as in the previous case). You will be prompted with a list of files and directories in the current working
directory. (You can tell the directory names because they end with a slash; they will also appear in a
bold face if your terminal allows it.) You can select any of the file names by using the cursor keys, or
any other movement key. Pressing an alphabetic key will movethe cursor to the first entry after the
cursor that starts with the given letter. When the cursor is positioned over the file you want to open, press
RETURN, and the file will be opened. If instead you move to a directory name, pressing RETURN will
display the contents of that directory.

You can also escape with F1, ESCAPE or ESCAPE-ESCAPE and manually type the file name on the
command line (or escape again, and abort theOpen operation). If you escape with TAB instead, the file
or directory under the cursor will be copied in the input line, where you can modify it manually.ne has
also file name completion features activated by TAB (see Section 3.3 [The Input Line], page 13).

When you want to save a file, just use the commandSave (CONTROL-S). It will use the current
document name or will ask you for one if the current document has no name.SaveAs , on the other hand,
will always ask for a new name before saving the file.

If ne is interrupted by an external signal (for instance, if your terminal crashes), it will try to save
your work in some emergency files. These files will have names similar to your current files, but they
will have a pound sign ‘#’ prefixed to their names. See Section 3.10 [Emergency Save],page 23.

2.4 Editing
An editor is presumably used for editing text. If you decide not to edit text, you probably don’t want to
usene, because that’s all it does—it edits text. It does not playTetris . It does not evaluate recursive
functions. It does not solve your love problems. It just allows you to edit text.

The design ofne makes editing extremely natural and straightforward. There is nothing special you
have to do to start editing once you’ve startedne. Just start typing, and the text you type shows up in
your document.

ne provides two ways of deleting characters, the BACKSPACE (orCONTROL-H, if you have no such
key) and the DELETE key. In the former case you delete the character to the left of the cursor, while in
the latter case you delete the character just under the cursor. This is in contrast with manyUN* X edi-
tors, which for unknown reasons decide to limit your ways of destroying things—something notoriously
much funnier than creating. (See Section 4.11.4 [DeleteChar], page 50 and Section 4.11.7 [Backspace],
page 50.)

If you want to delete a line, you can use theDeleteLine command, orCONTROL-Y. A very nice
feature ofne is that each time a nonempty line is deleted, it is stored in a temporary buffer from which
it can be undeleted via theUndelLine command orCONTROL-U. (See Section 4.11.9 [DeleteLine],
page 50 and Section 4.7.3 [UndelLine], page 35.)

If you want to copy, cut, paste or erase a block of text, you have to set a mark. This is done via
the Mark command, activated by choosing the ‘Mark Block ’ item of the ‘Edit ’ menu, or by pressing
CONTROL-B (think “block”). This commandtogglesthe mark (puts it in the current cursor position or
removes it from wherever it is). Whenever the mark is set, thezone between the mark and the cursor can
be cut, copied or erased. Note that by usingCONTROL-@you can set averticalmark instead, which allows
you to mark rectangles of text. Whenever a mark has been set, either an ‘M’ appears on the command line
or a ‘V’ appears if the mark is vertical. If you forget where the markis currently, you can use the ‘Goto

Mark ’ menu item of the ‘Search ’ menu to move the cursor to it.

6 ne ’s manual

When you cut or copy a block, you can save it with the ‘Save Clip... ’ menu item of the ‘Edit ’
menu. You can also load a file into a clip with ‘Open Clip... ’, and paste it anywhere. All such
operations act on thecurrent clip, which is by default the clip 0. You can change the current clip number
with theClipNumber command. See Section 4.4.10 [ClipNumber], page 29.

One of the most noteworthy features ofne is its unlimited undo/redocapability. Each editing action
is recorded, and can be played back and forth as much as you like. Undo and redo are bound to the
function keys F5 and F6.

Another interesting feature ofne is it’s ability to load an unlimited number of documents. If you acti-
vate theNewDoccommand (using the ‘Document ’ menu or the command line), a new, empty document
will be created. You can switch between the existing documents in memory with F2 and F3, which are
bound to thePrevDoc andNextDoc commands. If you have a lot of documents, the ‘Select... ’ menu
item (F4) prompts you with the list of names of currently loaded documents and allows you to choose
directly what to edit.

2.5 Basic Preferences
ne has a number offlags that specify alternative behaviors, the most prototypicalexample being the
insert flag, which specifies whether the text you type is inserted into the existing text or overwrites it.
You can toggle this flag with the ‘Insert ’ menu item of the ‘Prefs ’ menu, or with the INSERT key of
your keyboard. (Togglemeans to change the value of a flag from true to false, or from false to true; see
Section 4.9.4 [Insert], page 38.)

Another important flag is thefree formflag, which specifies whether the cursor can be moved beyond
the right end of each line of text or only to existing text (a lavi). Programmers usually prefer non free
form editing; text writers seem to prefer free form. See Section 4.9.6 [FreeForm], page 38 for some
elaboration. The free form flag can be set with the ‘Free Form ’ menu item of the ‘Prefs ’ menu.

At this point, we suggest you explore by trial and error the other flags of the ‘Prefs ’ menu, or try
theFlags command (see Section 4.9.1 [Flags], page 37), which explains all the flags and the commands
that operate on them. We prefer spending a few words discussingautomatic preferencesor autoprefs.

Having many flags ensures a high degree of flexibility, but it can turn editing into a nightmare if
you have to turn on and off dozens of flags for each different kind of file you edit. ne ’s solution is to
automatically set a document’s flags when a file is loaded based on your stated preferences for eachfile
type. A file’s type is determined by theextensionof its file name, that is, the last group of letters after
the last dot. For instance, the extension of ‘ne.texinfo ’ is ‘ texinfo ’, the extension of ‘source.c ’ is
‘c ’, and the extension of ‘my.txt ’ is ‘ txt ’.

Whenever you select the ‘Save AutoPrefs ’ menu item,ne saves the flags of your current document
to be used when you load other files with the same extension as your current document. Theseautoprefs
are saved in a file in your ‘˜/.ne ’ directory. This file has the same name as the extension of thecurrent
document with ‘#ap ’ appended to it. It contains all the commands necessary to recreate your current
document’s flag settings. Whenever you open a file with this file name extension,ne will automagically
recreate your preferred flag settings for that file type. (There is a flag that inhibits the process; see
Section 4.9.2 [AutoPrefs], page 38.)

Finally, when you select the ‘Save Def Prefs ’ menu item, a special preferences file named
‘ .default#ap ’ is saved. These preferences are loaded wheneverne is run before loading any file.
This is how you set up the preferences you always want to be set.

A small set of preferences are global tone rather than specific to particular document types. Thus
they are saved in the ‘.default#ap ’ file by the SaveDefPrefs command or the ‘Save Def Prefs ’
menu. They are not saved by theSaveAutoPrefs command. These preferences are:FastGUI ,
RequestOrder , StatusBar and VerboseMacros ; see Section 4.9.5 [FastGUI], page 38, See Sec-
tion 4.9.8 [RequestOrder], page 39, See Section 4.9.9 [StatusBar], page 39, and See Section 4.9.16
[VerboseMacros], page 41.

Chapter 2: Basics 7

Similarly, the current syntax definition is specific to the current document type, so it is saved only
in autoprefs files by theSaveAutoPrefs command or ‘Save AutoPrefs ’ menu; it is not saved in the
‘ .default#ap ’ file.

Note also that a preferences file is just a macro (as describedin the following section). Thus, it can
be edited manually if necessary.

2.6 Basic Macros
Very often, the programmer or the text writer has to repeat some complex editing action over a series of
similar blocks of text. This is wheremacroscome in.

A macrois a stored sequence of commands. Any sequence of commands you find yourself repeating
is an excellent candidate for being made into a macro. You could create a macro by editing a document
that only contains validne commands and saving it, but by far the easiest way to create a macro is to
havene record your actions.ne allows you to record macros and then play them (execute the commands
they contain) many times. You can save them on disk for futureuse, edit them, or bind them to any key.
You could even reconfigure each key of your keyboard to play a complex macro if you wanted to.

ne can have any number of named macros loaded at the same time. Itcan also have one unnamed
macro in itscurrent macrobuffer. The named macros are typically loaded from disk files, while the
current macro buffer is where your recorded macro is held before you save it or record over it.

Recording a macro is very simple. The keystrokeCONTROL-T starts and stops recording a macro.
When you start recording a macro,ne clears thecurrent macrobuffer and starts recording all your
actions (with a few exceptions). You can see that you are recording a macro if an ‘R’ appears on the
status bar. When you stop the recording process (again usingCONTROL-T), you can play the macro with
the ‘Play Once ’ item of the ‘Macros ’ menu or with the F9 key. If you want to repeat the action many
times, thePlay command allows you to specify a number of times to repeat the macro. You can always
interrupt the macro’s execution withCONTROL-\.

A recorded macro has no name. It’s just an anonymous sequenceof commands in thecurrent macro
buffer, and it will go away when you exitne or record another macro. If you want to save your recorded
macro for future use, you can give it a name and save it with the‘Save Macro... ’ menu item or the
SaveMacro command. The macro is saved as a file in your current directoryby default or whatever
directory you specify when prompted for the macro’s name. Ifyou save it in your ‘̃/.ne ’ directory
then it will be easy to access it later from any other directory. The ‘Open Macro... ’ menu item and the
OpenMacro command load a macro from a file into the current macro buffer just as if you justRecord ed
it.

Any macro can be loaded from a file and played with the ‘Play Macro... ’ menu item or theMacro

command. (This won’t modify any recorded anonymous macro that may be in thecurrent macrobuffer;
OpenMacro does that.) Useful macros can be permanently bound to a keystroke as explained in Sec-
tion 5.1 [Key Bindings], page 53. Moreover, whenever a commandline does not specify one ofne ’s
built in commands, it is assumed to specify the name of a macroto execute. Thus, you can execute
macros just by typing their file names. Include a path if the macro file’s directory is different from your
current directory or your ‘˜/.ne ’ directory.

If the first attempt to open a macro fails,ne checks for a macro with the given name in your ‘˜/.ne ’
directory. This allows you to program simple extensions tone ’s language. For instance, all automatic
preferences macros—which are just specially named macros that contain only commands to set prefer-
ences flags—can be executed just by typing their names. For example, if you have an automatic prefer-
ence for the ‘doc ’ extension for example, you can setne ’s flags exactly as if you loaded a file ending
with ‘ .doc ’ by typing the commanddoc#ap .

In general, it is a good idea to save frequently used macros in‘ ˜/.ne ’ so that you can invoke them
by name without specifying a path regardless of your currentdirectory. On the other hand, if you have
a macro that is customized for one document or a set of documents that you store in one directory, then

8 ne ’s manual

you might want to save the macro in that directory as well. If you do, then you would want tocd to that
directory before you startne so that you can access that macro without specifying a path.

If your macro has the same name as one ofne ’s built-in commands, you can only access it with the
Macro name command. Built-in command names are always found first beforene command interpreter
looks for macros.

The system administrator may make some macros available from ne ’s global directory. See Sec-
tion 3.1 [Arguments], page 11.

Since loading a macro each time it is invoked would be a ratherslow and expensive process, once
a macro has been executed it is cached internally. Subsequent invocations of the macro will used the
cached version.

Warning: macro names arenotcase sensitive or path sensitive.ne only caches the file name of a macro,
not the path name, and uses a case insensitive comparison. That is, if you invoke ‘̃/foobar/macro ’,
a subsequent call for ‘/usr/MACRO ’ will use the cached version of ‘˜/foobar/macro ’. You can clear
the cache by using theUnloadMacros command. See Section 4.6.6 [UnloadMacros], page 34.

The behaviour of macros may vary with different preferences. If the user changes the AutoIndent
and WordWrap flags, for example, new lines and new text may notappear in the same way they would
have when a macro was recorded. Good general purpose macros avoid such problems by using the
PushPrefs command first. This preserves the user’s preferences. Then they set any preferences that
could affect their behaviour. Once that is taken care of theyget on with the actual work for which they
were intended. Finally, they use thePopPrefs command to restore the user’s preferences. Note that
if a macro is stopped before it restores the preferences (either by the user pressingCONTROL-\ or by a
command failing) then that responsibility falls on the user.

Finally, any line in a macro that starts with a non-alphabetical character is considered a comment, so
you can add comments to a macro by starting a line with ‘#’.

2.7 More Advanced Features

2.7.1 UTF-8 support
UTF-8 is a character encoding that can represent the whole ISO 10646 character set—two billion charac-
ters! ne can load and manipulate UTF-8 files transparently, in particular on systems that provide UTF-8
I/O. See Section 3.11 [UTF-8 Support], page 23.

2.7.2 Bookmarks
It often happens that you have to browse through a file, switching frequently between a small num-
ber of positions. In this case, you can usebookmarks. There are up to ten bookmarks per document,
each designated by a single digit, with the default being ‘0’. You can set them with theSetBookmark

command, and you can return to any set bookmark with theGotoBookmark command. Also,ne sets
an automatic bookmark (designated by ‘- ’) to your current position in a document whenever you use
the GotoBookmark command. You can use this automatic bookmark to return to that previous loca-
tion with a GotoBookmark - command. Doing so will reset the automatic bookmark, so thatsubse-
quentGotoBookmark - commands will switch between those two locations. See Section 4.10.26 [Set-
Bookmark], page 48, Section 4.10.27 [GotoBookmark], page 49,and Section 4.10.28 [UnsetBookmark],
page 49. Note that in the default configuration no key bindingis assigned to these commands. If you use
them frequently, you may want to change the key bindings. SeeSection 5.1 [Key Bindings], page 53.

2.7.3 Automatic Completion
TheAutoComplete command helps you extend a given prefix with matching words from your open doc-
uments. You can specify theAutoCompete command and prefix on the command line, or you can enter
the prefix directly into your document and activate theAutoComplete command. With the cursor at the
right end of your prefix, activate theAutoComplete command by entering either the ESCAPE-TAB or

Chapter 2: Basics 9

the ESCAPE-I key sequence, or theCONTROL-META-I key combination, or by selectingAutoComplete

from theExtras menu.

If the prefix can be extended unambiguously, the extension will be immediately inserted into your
document (this is the case, for instance, if only one word matches the prefix), and a message will tell you
whether the extension is an actual word or just the longest possible extension (for instance, if you expand
‘ fo ’ and your document contains ‘foobar ’ and ‘foofoo ’ then the partial match will be ‘foo ’). Other-
wise,ne presents you with a list of all matching words: choose the oneyou want and press RETURN, to
select it; otherwise, press F1, ESCAPE or ESCAPE-ESCAPE to cancel the completion operation.

The current state of theCaseSearch flag determines whether the prefix match is case sensitive. Any
matching words which only exist in other open documents but not the current one are displayed in bold
with an asterisk; think of that as a warning that if you selectone of these bold words you will introduce
a new word into your current document. Plain words already exist somewhere in your current document.
See Section 4.5.10 [AutoComplete], page 32, and Section 4.5.9 [CaseSearch], page 32.

2.7.4 MS-DOS files
ne will detect automagically the presence of MS-DOS line terminators (CR/LFs) and set the CR/LF
flag. When the file will be saved, the terminators will be restored correctly. You can change this be-
haviour using thePreserveCR andCRLFcommands. See Section 4.9.17 [PreserveCR], page 41, and
Section 4.9.18 [CRLF], page 41.

2.7.5 Binary files
ne allows a simplified form ofbinary editing. If the binary flag is set, only NULLs are considered
newlines when loading or saving. Thus, binary files can be safely loaded, modified and saved. Inserting
a new line or joining two lines has the effect of inserting or deleting a NULL. Be careful not to mismatch
the state of the binary flag when loading and saving the same file.

2.7.6 File requester
The NoFileReq command deactivates the file requester. It is intended for “tough guys” who always
remember the names of their files and can type them at the speedof light (maybe with the help of the
completer, which is activated by the TAB key; see Section 3.3[The Input Line], page 13).

2.7.7 ExecutingUN* X commands
There are three ways to executeUN* X commands from withinne. The System command can run
any UN* X command; you will get back intone as soon as the command execution terminates. See
Section 4.12.10 [System], page 52. TheThrough (META-T) command (which can be found in the
‘Edit ’ menu), however, is much more powerful; it cuts the current block, passes it as standard input
to anyUN* X command, and pastes the command’s output at the current cursor position. This provides
a neat way to pass a part of your document through one ofUN* X ’s manyfilter commands(commands
that read from standard input and write to standard output, e.g., sort). See Section 4.4.11 [Through],
page 30. Finally, you can use theSuspend (CONTROL-Z) command to temporarily stopne and return to
your command shell. See Section 4.12.9 [Suspend], page 52.

2.7.8 Advanced key bindings
For an exhaustive list of the remaining features ofne, see Chapter 3 [Reference], page 11.

10 ne ’s manual

Chapter 3: Reference 11

3 Reference

In this chapter we shall methodically overview each part ofne. It is required reading for becoming an
expert user because some commands and features are not available through menus.

3.1 Arguments
The main arguments you can give tone are the names of files you want to edit. They will be loaded into
separate documents. If you specify--help anywhere on the command line, a simple help text describing
ne ’s arguments will be printed.

The+N option causesne to advance to theN th line of the first document loaded. This option is fairly
common among editors and text display programs likevi and less . TheN itself is optional. Without
it, a bare+ on the command line causesne to advance to the last line of the first document.

The --no-config option skips the reading of the key bindings and menu configuration files (see
Chapter 5 [Configuration], page 53). This is essential if you are experimenting with a new configuration
and you make mistakes in it.

The--macro filename option specifies the name of a macro that will be started just after all docu-
ments have been loaded. A typical macro would move the cursorto a certain line.

The--keys filename option and the--menus filename option specify a name different from the
default one (‘.keys ’ and ‘.menus ’, respectively) for the key bindings and the menu configuration files.
Note thatne searches for these files first in the current directory, and then in your ‘̃ /.ne ’ directory.

The --ansi and the--no-ansi options managene ’s built-in ANSI sequences. Usuallyne tries to
retrieve from your system some information that is necessary to handle your terminal. If for some reason
this is impossible, you can askne to use a built-in set of sequences that will work on many terminals
using the--ansi option (to be true,ne can be even compiled so that it uses directly the built-in set, but
you need not know this). If you want to be sure (usually for debugging purposes) thatne is not using the
built-in set, you can specify--no-ansi .

The --no-syntax option disablesne ’s normal syntax highlighting capability. For most editing
situations, this would be unnecessary, but for extremely large files it may be helpful. Syntax highlighting
incurs small memory usage and processor overhead penaltiesfor each line of text. The--no-syntax

option eliminates that overhead.

The--utf8 and--no-utf8 options can be used to force or inhibit UTF-8 I/O, overridingthe choice
imposed by the system locale. Note, however, that in generalit is more advisable to set theLANG

environment variable to a locale supporting UTF-8 (you can usually see the locale list withlocale

-a). See Section 3.11 [UTF-8 Support], page 23.

If you need to open a file whose name starts with ‘-- ’, you can put ‘-- ’ before the filename, which
will skip command recognition for the next word.

Finally, ne has aglobal directorywhere the system administrator can store macros, default prefer-
ences, and syntax definitions for all users of the system. Thelocation of this directory is defined when
ne is built, but you can override it by creating and exporting the NE_GLOBAL_DIRenvironment variable
prior to invokingne. If you load no files when you startne, it will display a splash screen. The last line
on that screen shows the global directoryne is using, if it exists, or an error message, otherwise.

3.2 The Status Bar
The last line of the screen, thestatus bar, is reserved byne for displaying some information about its
internal state. Note that on most terminals it is physicallyimpossible to write a character on the last
column of the last line, so we are not stealing precious editing space.

The status bar looks more or less like this:

12 ne ’s manual

L: 31 C: 25 12% iabcwfpvurtBMRPC * @8 20 /foo/bar

The numbers after ‘L: ’ and ‘C: ’ are the line and column of the cursor position. The first lineand the
first column are both number 1. Then,ne shows the percentage of lines before the current line (it will be
0% on the first line, and 100% on the last line).

Following that are a sequence of letters or dashes. These indicate the status of a series of flags which
we shall look at later.

The hexadecimal digits following the flags give the code for the character at the cursor, and are
displayed optionally (see Section 4.9.10 [HexCode], page 39). If your cursor is at or beyond the right
end of the current line, the code disappears.

The file name appearing after the character code is the file name of the current document. The left
end of very long file names may be truncated to keep the right end visible. Of course,ne is keeping track
internally of the complete file name. It is used by theSave command and as the default input for the
SaveAs command. See Section 4.2.3 [Save], page 26, and Section 4.2.4 [SaveAs], page 26.

The displayed line and column numbers, the percentage indicator and the character code change when
the cursor moves. This fact can really slow down cursor movement if you are usingne through a slow
connection. If you find this to be a problem, it is a good idea toturn off the status bar using either
the ‘Status Bar ’ menu item of the ‘Prefs ’ menu or theStatusBar command. See Section 4.9.9
[StatusBar], page 39. Alternatively you can turn on the fast GUI mode using either the ‘Fast GUI ’ menu
item of the ‘Prefs ’ menu or theFastGUI command (see Section 4.9.5 [FastGUI], page 38). In fast GUI
mode the status bar is not draw in reverse, so some additionaloptimization can be done when refreshing
it.

The letters after the line and column number represent the status of the flags associated with the
current document. Flags that are off display a ‘- ’ instead of a letter. Each flag also has an associated
command. TheFlags command describes them all when you don’t have this manual handy. Here’s the
list in detail:

‘ i ’ appears if the insert flag is true. See Section 4.9.4 [Insert], page 38.

‘a’ appears if the auto indent flag is true. See Section 4.8.8 [AutoIndent], page 36.

‘b’ appears if the back search flag is true. See Section 4.5.8 [SearchBack], page 32.

‘c ’ appears if the case sensitive search flag is true. See Section 4.5.9 [CaseSearch], page 32.

‘w’ appears if the word wrap flag is true. See Section 4.8.7 [WordWrap], page 36.

‘ f ’ appears if the free form flag is true. See Section 4.9.6 [FreeForm], page 38.

‘p’ appears if the automatic preferences flag is true. See Section 4.9.2 [AutoPrefs], page 38.

‘v ’ appears if the verbose macros flag is true. See Section 4.9.16 [VerboseMacros], page 41.

‘u’ appears if the undo flag is true. See Section 4.7.4 [DoUndo],page 35.

‘ r ’ appears if the read only flag is true. See Section 4.9.11 [ReadOnly], page 40.

‘ t ’ appears if the tabs flag is true. See Section 4.9.14 [Tabs], page 40.

‘B’ appears if the binary flag is true. See Section 4.9.3 [Binary], page 38.

‘M’ appears if you are currently marking a block. See Section 4.4.1 [Mark], page 28.

‘V’ can appear in place of ‘M’ if you are currently marking a vertical block. See Section 4.4.2
[MarkVert], page 28.

‘R’ appears if you are currently recording a macro. See Section4.6.1 [Record], page 33.

‘P’ appears if the PreserveCR flag is true. See Section 4.9.17 [PreserveCR], page 41.

‘C’ appears if the CRLF flag is true. See Section 4.9.18 [CRLF], page 41.

Chapter 3: Reference 13

‘ * ’ appears if the document has been modified since the last save, or if theModified command
was issued to set this flag. See Section 4.9.27 [Modified], page43.

‘@’ appears if UTF-8 I/O is enabled. See Section 4.9.31 [UTF8IO], page 45.

‘A/8/U ’ denotes the current buffer encoding—US-ASCII, 8-bit or UTF-8. See Section 4.9.29
[UTF8], page 44.

Note that sometimesne needs to communicate some message to you. The message is usually written
over the status bar, where it stays until you do something. Any action such as moving the cursor or
inserting a character will restore the normal status bar.

3.3 The Input Line
The bottom line of the screen is usually occupied by the status bar (see Section 3.2 [The Status Bar],
page 11). However, wheneverne prompts you for a command or file name or asks you to confirm some
action, the bottom line becomes theinput line. You can see this because aprompt is displayed at the start
of the line, suggesting what kind of input is required. (Prompts always ends with a colon, so it is easy to
distinguish them fromerror messages, which overwrite the status line from time to time.)

ne uses the input line in two essentially different ways:immediateinput andlong input. You can
easily distinguish between these two modes because in immediate input mode the cursor is not on the
input line, while for long input mode it is.

Immediate input is used wheneverne needs you to specify a simple choice that can be expressed by
one character (for example, ‘y ’ or ‘ n’). When you type the character,ne will immediately accept and
use your input. Most immediate inputs display a character just after the prompt. This character is the
default response, which is used if you just press the RETURN key. Note that immediate input is not case
sensitive. Moreover, if a yes/no choice is requested,anythingother than ‘y ’ will be considered a negative
response.

Long input is used when a whole string is required. You can enter and edit your response to long
inputs like a line of text in a document. Most key bindings related to line editing work on the command
line exactly as they do in a document. This is true even of custom key bindings. Just edit as you are used
to. Moreover, the you can paste the first line of the current clip using the keystroke that is bound to the
Paste command, usuallyCONTROL-V. If your long input is longer than the screen width, the inputline
scrolls to accommodate your text so you can input very long lines even on small monitors. (There is a
limit of 2048 characters.)

The default response to a long input is the response you gave to the previous long input. Yourfirst
actionwhen presented with a long input will either erase the default response or allow you to edit it. If
the first thing you type is a printing character, the default response will be erased. Anything else (cursor
movement for example) will allow you to edit it further.

Long input also lets you access your previous long input responses with the up and down cursor
commands (or with wider movement commands, such as start/end of file, page up/down, etc.). Once you
find a previous input you like, you can edit it further. Long input history is not document specific, so you
can recall any of your inputs regardless of which document was active when you entered it. Furthermore,
ne saves the most recent long inputs in ‘˜/.ne/.history ’ when you end yourne session and loads
them again when you begin anotherne session.

When asked to input a number, you can choose between decimal,octal and hexadecimal notation
in the standard way: a number starting with ‘0’ is considered in octal, a number starting with ‘0x ’ is
considered in hexadecimal, and in all other cases decimal base is assumed.

Whenever a file name is requested, you can type a partial file name andcompleteit with the TAB
key. ne will scan the current directory (or the directory that you partially specified) and search for the
files matching your partial suggestion. The longest prefix common to all such files will be copied on
the input line (ne will beep if no completion exists). It’s easier done than said—just try. If you press

14 ne ’s manual

TAB again, you will be brought into the file requester: only the files and directories matching your
partial specification will appear, and as usual you will be able to navigate and select a file or escape. See
Section 3.5 [The Requester], page 14. Note thatne considers thelast wordon the input line the partial
file name to complete, no matter where the cursor is currently(you must use quotes if the name contains
spaces, even if it is the only item on the input line).

Complete long input with the RETURN key. You can cancel a long input using F1, ESCAPE,
ESCAPE-ESCAPE or any key that is bound to theEscape command. The effect will vary depend-
ing on what your were requested to input, but the execution ofthe command requiring the input will
stop.

3.4 The Command Line
The command line is a typical (topical) way of controlling aneditor on character driven systems. It has
some advantages over menus in terms of access speed, but it isnot desirable from a user interface point
of view. ne has a command line that should be used whenever strange features have to be accessed, or
whenever you want to use a command that you are familiar with and that is not bound to any key.

You have two ways to access the command line: by activating the menu and typing a colon (‘: ’) or by
typingCONTROL-K (or any key that is bound to theExec command; see Section 4.12.4 [Exec], page 51).
The first method will work regardless of any key binding configuration if you activate the menus with
the ESCAPE key since that key cannot be reconfigured. Of course, there is also a menu entry that does
the same job.

Once you activate the command line, the status bar will turn into an input line (see Section 3.3 [The
Input Line], page 13) with a ‘Command:’ prompt waiting for you to do a long input. In other words, you
can now type any command (possibly with arguments), and whenyou press RETURN, the command
will be executed.

If the command you specify does not appear inne ’s internal tables, it is considered to be the name of
a macro. See Section 2.6 [Basic Macros], page 7, for details.

3.5 The Requester
In various situations,ne needs to ask you to choose one string from several (where “several” can mean
a lot). For this kind of event, therequesteris issued. The requester displays the strings in as many
columns as possible and lets you move with the cursor from onestring to another. The strings can fill
many screens, which are handled as consecutive pages. Most navigation keys work exactly as in normal
editing. This is true even of custom key bindings. Thus, for instance, you can page up and down through
the list withCONTROL-P andCONTROL-N (in the standard keyboard configuration).

As with the input line (see Section 3.3 [The Input Line], page13), you can confirm your input with
RETURN or escape the requester with F1 or the ESCAPE key (or whatever has been bound to the
Escape command). Moreover, if you are selecting a file name there is a third possibility: by escaping
with the TAB key, the file or directory name that the cursor is currently on will be copied on the input
line. This allows you to choose an existing name and modify it.

A special feature is bound to alphabetic characters: they move you to the next entry starting with the
letter you typed. The search is case insensitive, and it continues on to the first string after having passed
the last one.

An example of a requester is the list of commands appearing when you use theHelp command.
Another is the list of document words matching a prefix given to theAutoComplete command. A third
example is the file requester thatne issues whenever a file operation is going to take place. In this case,
pressing RETURN while on a directory name will enter the directory. Note also that, should the requester
take too long to appear, you can interrupt the directory scanning withCONTROL-\. However, the listing
will likely be incomplete.

Chapter 3: Reference 15

Note that there are two items that always appear in the file requester: ‘./ ’ and ‘../ ’. The first
one represents the current directory and can be used to forcea reread of the directory. The second one
represents the parent directory and can be used to move up by one directory level.

The requester presents the strings by default in “row major order,” which means the second string
is on the same row as the first but to its right, at the top of the second column, and so on across each
row before filling in the next row down. If you prefer your lists displayed in “column major order”—the
first, second, and third strings are in the same column and each column is filled before starting on the
next column to the right—then use theRequestOrder command to switch that preference. The setting
will be stored in your default preferences the next time you save them. See Section 4.9 [Preferences
Commands], page 37.

3.6 Syntax Highlighting
Syntax highlighting is particularly useful for programming language text or other types of documents
which have a strictly defined syntax. Colors indicate different syntactic categories of text according to
the syntax definition in use.

Syntax definitions are stored in separate files.ne comes with a suite of syntax definitions for many
popular programming languages. When you load a file,ne selects the appropriate syntax definition as
determined by the filename extension in much the same way autoprefs are loaded. It also contains a
built-in table of common filename extensions that share the same syntax definitions. For example, both
‘cbl ’, and ‘cob ’ files use the ‘cobol ’ definition. See the Section 4.9.28 [Syntax], page 43 command for
the complete list of built-in extension mappings.

If there is no matching syntax definition for the filename extension, or if the buffer you are editing
has no filename yet, or you just want to try a different syntax definition, you can load and use the syntax
definition of your choice with theSyntax command. It takes the syntax name as a parameter. For
example, the name “c” works for C syntax files with extensions ‘.c ’, ‘ .h ’, ‘ c++ ’, etc. ne searches for
the specified syntax definition file in the ‘syntax ’ subdirectory of your ‘̃/.ne ’ directory first. If not
found there,ne then looks in the ‘syntax ’ subdirectory ofne ’s global directory for the syntax definition
file. See Section 3.1 [Arguments], page 11.

With no parameter, theSyntax command prompts you for a syntax to load, the offered defaultbeing
the currently loaded syntax if there is one.

You can create your own syntax definitions and store them in your ‘˜/.ne/syntax ’ directory (ac-
tually, modifying the colors of an existing definition is much easier; see Chapter 6 [Hints and Tricks],
page 55). A complete explanation of syntax specifications isbeyond the scope of this document, but
the existing definition files should prove to be useful examples. In particular, the ‘syntax/c.jsf ’ file
contains some particularly helpful comments. Syntax definition files have a ‘.jsf ’ extension. Do not
include that extension when using theSyntax command.

Syntax highlighting does incur a slight penalty in memory used per line of text, and it also consumes
some CPU resources. For small to medium sized files you’ll probably never notice. But for extremely
large files—on the order of the size of your system’s RAM—the difference could be significant. If you
invokene with the--no-syntax parameter,ne will disable the syntax highlighting mechanism entirely,
freeing up the memory and CPU otherwise consumed. (Note that if you are that tight on memory, you
may need to disable the undo buffer as well. See Section 4.7.4[DoUndo], page 35.)

ne uses code from another editor—the GPL-licensedjoe —for its syntax highlighting capabilities.
Because of this fact, the syntax definition files are identical, even to the ‘.jsf ’ extension, which is an
acronym for “Joe’s Syntax File”. It’s possible that if bothjoe andne are installed on your system that
they share the same syntax file directory.

3.7 Menus
ne ’s menus are extremely straightforward. The suggested way of learning their use is by trial and error,
with a peek here and there at this manual when some doubts arise.

16 ne ’s manual

You activate menus with the F1 key, or in case your keyboard does not have such a key, ESCAPE,
ESCAPE-ESCAPE or any key that is bound to theEscape command. Move around the menus pressing
with the cursor keys and the page up/down keys (which move to the first or last menu item in a menu).
You can also move around menus and menu items by pressing the alphabetic keys; a lower case letter
will move to the first item in the current menu whose name starts with the given letter; an upper case
letter will move to the first menu whose name starts with the given letter.

Each menu item ofne ’s standard menu corresponds to a single command. In explaining what each
menu item allows you to do, we shall simply refer you to the section that explains the command relative
to the menu item.

If you plan to changene ’s menu (see Section 5.2 [Changing Menus], page 54), you shouldtake
a look at the file ‘default.menus ’ that comes withne ’s distribution. It contains a complete menu
configuration that clones the standard one.

3.7.1 File
The File menu contains standard items that allow loading andsaving files. Quittingne (which doesn’t
save changes) or exitingne (which does save changes) is also possible.

‘Open... ’ See Section 4.2.1 [Open], page 26.

‘Open New... ’
See Section 4.2.2 [OpenNew], page 26.

‘Save ’ See Section 4.2.3 [Save], page 26.

‘Save As... ’
See Section 4.2.4 [SaveAs], page 26.

‘Quit Now ’
See Section 4.3.1 [Quit], page 27.

‘Save&Exit ’
See Section 4.3.2 [Exit], page 27.

‘About ’ See Section 4.12.1 [About], page 51.

3.7.2 Documents
The Documents menu contains commands that create new documents, destroy them, and browse through
them.

‘New’ See Section 4.3.3 [NewDoc], page 27.

‘Clear ’ See Section 4.3.4 [Clear], page 27.

‘Close ’ See Section 4.3.5 [CloseDoc], page 27.

‘Next ’ See Section 4.3.6 [NextDoc], page 27.

‘Prev ’ See Section 4.3.7 [PrevDoc], page 27.

‘Select... ’
See Section 4.3.8 [SelectDoc], page 27.

3.7.3 Edit
The Edit menu contains commands related to cutting and pasting text.

‘Mark Block ’
See Section 4.4.1 [Mark], page 28.

‘Cut ’ See Section 4.4.4 [Cut], page 28.

Chapter 3: Reference 17

‘Copy’ See Section 4.4.3 [Copy], page 28.

‘Paste ’ See Section 4.4.5 [Paste], page 29.

‘Erase ’ See Section 4.4.7 [Erase], page 29.

‘Through ’ See Section 4.4.11 [Through], page 30.

‘Delete Line ’
See Section 4.11.9 [DeleteLine], page 50.

‘Delete EOL ’
See Section 4.11.10 [DeleteEOL], page 50.

‘Mark Vert ’
See Section 4.4.2 [MarkVert], page 28.

‘Paste Vert ’
See Section 4.4.6 [PasteVert], page 29.

‘Open Clip... ’
See Section 4.4.8 [OpenClip], page 29.

‘Save Clip... ’
See Section 4.4.9 [SaveClip], page 29.

3.7.4 Search
The Search menu contains commands related to searching for specific contents or locations within a
document.

‘Find... ’ See Section 4.5.1 [Find], page 30.

‘Find RegExp... ’
See Section 4.5.2 [FindRegExp], page 30.

‘Replace... ’
See Section 4.5.3 [Replace], page 30.

‘Replace Once... ’
See Section 4.5.4 [ReplaceOnce], page 31.

‘Replace All... ’
See Section 4.5.5 [ReplaceAll], page 31.

‘Repeat Last ’
See Section 4.5.6 [RepeatLast], page 31.

‘Goto Line... ’
See Section 4.10.5 [GotoLine], page 45.

‘Goto Col... ’
See Section 4.10.6 [GotoColumn], page 46.

‘Goto Mark... ’
See Section 4.10.7 [GotoMark], page 46.

‘Match Bracket ’
See Section 4.5.7 [MatchBracket], page 32.

‘Set Bookmark ’
See Section 4.10.26 [SetBookmark], page 48.

‘Unset Bookmark ’
See Section 4.10.28 [UnsetBookmark], page 49.

‘Goto Bookmark ’
See Section 4.10.27 [GotoBookmark], page 49.

18 ne ’s manual

3.7.5 Macros
The Macros menu contains commands related to creating and using macros.

‘Record ’ See Section 4.6.1 [Record], page 33.

‘Stop ’ See Section 4.6.1 [Record], page 33.

‘Replace... ’
See Section 4.5.3 [Replace], page 30.

‘Play Once ’
‘Play Many... ’

See Section 4.6.2 [Play], page 33.

‘Play Macro... ’
See Section 4.6.3 [Macro], page 33.

‘Open Macro... ’
See Section 4.6.4 [OpenMacro], page 33.

‘Save Macro... ’
See Section 4.6.5 [SaveMacro], page 34.

3.7.6 Extras
This menu contains a few special items that don’t fit in obvious ways into other menus.

‘Exec... ’ See Section 4.12.4 [Exec], page 51.

‘Suspend ’ See Section 4.12.9 [Suspend], page 52.

‘Help... ’ See Section 4.12.6 [Help], page 51.

‘Refresh ’ See Section 4.12.8 [Refresh], page 52.

‘Undo’ See Section 4.7.1 [Undo], page 34.

‘Redo’ See Section 4.7.2 [Redo], page 34.

‘Undel Line ’
See Section 4.7.3 [UndelLine], page 35.

‘Center ’ See Section 4.8.1 [Center], page 35.

‘Paragraph ’
See Section 4.8.2 [Paragraph], page 35.

‘Adjust View ’
‘Center View ’

See Section 4.10.23 [AdjustView], page 48.

‘ToUpper ’ See Section 4.8.3 [ToUpper], page 36.

‘ToLower ’ See Section 4.8.4 [ToLower], page 36.

‘Capitalize ’
See Section 4.8.5 [Capitalize], page 36.

3.7.7 Navigation
The Navigation menu contains commands related moving around in a document.

‘Move Left ’
See Section 4.10.1 [MoveLeft], page 45.

Chapter 3: Reference 19

‘Move Right ’
See Section 4.10.2 [MoveRight], page 45.

‘Line Up ’ See Section 4.10.3 [LineUp], page 45.

‘Line Down ’
See Section 4.10.4 [LineDown], page 45.

‘Prev Page ’
See Section 4.10.8 [PrevPage], page 46.

‘Next Page ’
See Section 4.10.9 [NextPage], page 46.

‘Page Up’ See Section 4.10.10 [PageUp], page 46.

‘Page Down’
See Section 4.10.11 [PageDown], page 46.

‘Start Of File ’
See Section 4.10.19 [MoveSOF], page 47.

‘End Of File ’
See Section 4.10.18 [MoveEOF], page 47.

‘Start Of Line ’
See Section 4.10.15 [MoveSOL], page 47.

‘End Of Line ’
See Section 4.10.14 [MoveEOL], page 47.

‘Top Of Screen ’
See Section 4.10.16 [MoveTOS], page 47.

‘Bottom Of Screen ’
See Section 4.10.17 [MoveBOS], page 47.

‘ Incr Up ’ See Section 4.10.21 [MoveIncUp], page 47.

‘ Incr Down ’
See Section 4.10.22 [MoveIncDown], page 48.

‘Prev Word ’
See Section 4.10.12 [PrevWord], page 46.

‘Next Word ’
See Section 4.10.13 [NextWord], page 47.

3.7.8 Prefs
The Prefs menu contains commands related to setting, storing, and using your preferred document flags.

‘Tab Size... ’
See Section 4.9.13 [TabSize], page 40.

‘Tabs/Spaces ’
See Section 4.9.14 [Tabs], page 40.

‘ Insert/Over ’
See Section 4.9.4 [Insert], page 38.

‘Free Form ’
See Section 4.9.6 [FreeForm], page 38.

20 ne ’s manual

‘Status Bar ’
See Section 4.9.9 [StatusBar], page 39.

‘Hex Code’
See Section 4.9.10 [HexCode], page 39.

‘Fast GUI ’
See Section 4.9.5 [FastGUI], page 38.

‘Word Wrap’
See Section 4.8.7 [WordWrap], page 36.

‘Right Margin ’
See Section 4.8.6 [RightMargin], page 36.

‘Auto Indent ’
See Section 4.8.8 [AutoIndent], page 36.

‘Preserve CR ’
See Section 4.9.17 [PreserveCR], page 41.

‘Save CR/LF ’
See Section 4.9.18 [CRLF], page 41.

‘Visual Bell ’
See Section 4.9.19 [VisualBell], page 42.

‘Load Prefs... ’
See Section 4.9.22 [LoadPrefs], page 42.

‘Save Prefs... ’
See Section 4.9.23 [SavePrefs], page 43.

‘Load AutoPrefs ’
See Section 4.9.24 [LoadAutoPrefs], page 43.

‘Save AutoPrefs ’
See Section 4.9.25 [SaveAutoPrefs], page 43.

‘Save Def Prefs ’
See Section 4.9.26 [SaveDefPrefs], page 43.

3.8 Regular Expressions
Regular expressions are a powerful way of specifying complexsearch and replace operations.ne sup-
ports the full regular expression syntax on US-ASCII and 8-bit buffers, but has to impose a restriction on
character sets when searching in UTF-8 text. See Section 3.11 [UTF-8 Support], page 23.

3.8.1 Syntax
The following section is taken (with minor modifications) from the GNU regular expression library
documentation and is Copyrightc© Free Software Foundation.

A regular expression describes a set of strings. The simplest case is one that describes a particular
string; for example, the string ‘foo ’ when regarded as a regular expression matches ‘foo ’ and nothing
else. Nontrivial regular expressions use certain special constructs so that they can match more than one
string. For example, the regular expression ‘foo|bar ’ matches either the string ‘foo ’ or the string ‘bar ’;
the regular expression ‘c[ad] * r ’ matches any of the strings ‘cr ’, ‘ car ’, ‘ cdr ’, ‘ caar ’, ‘ cadddar ’ and
all other such strings with any number of ‘a’’s and ‘d’’s.

Regular expressions have a syntax in which a few characters are special constructs and the rest are
ordinary. An ordinary character is a simple regular expression whichmatches that character and nothing

Chapter 3: Reference 21

else. The special characters are ‘$’, ‘ ˆ ’, ‘ . ’, ‘ * ’, ‘ +’, ‘ ?’, ‘ [’, ‘] ’ , ‘ (’, ‘) ’ and ‘\ ’. Any other character
appearing in a regular expression is ordinary, unless a ‘\ ’ precedes it.

For example, ‘f ’ is not a special character, so it is ordinary, and therefore‘ f ’ is a regular expression
that matches the string ‘f ’ and no other string. (It doesnot match the string ‘ff ’.) Likewise, ‘o’ is a
regular expression that matches only ‘o’.

Any two regular expressionsa andb can be concatenated. The result is a regular expression that
matches a string ifa matches some amount of the beginning of that string andb matches the rest of the
string.

As a simple example, we can concatenate the regular expressions ‘f ’ and ‘o’ to get the regular ex-
pression ‘fo ’, which matches only the string ‘fo ’. Still trivial.

Note: special characters are treated as ordinary ones if they are in contexts where their special mean-
ings make no sense. For example, ‘* foo ’ treats ‘* ’ as ordinary since there is no preceding expression on
which the ‘* ’ can act. It is poor practice to depend on this behaviour; better to quote the special character
anyway, regardless of where is appears.

The following are the characters and character sequences that have special meaning within regular
expressions. Any character not mentioned here is not special; it stands for exactly itself for the purposes
of searching and matching.

‘ . ’ is a special character that matches anything except a newline. Using concatenation, we
can make regular expressions like ‘a.b ’, which matches any three-character string which
begins with ‘a’ and ends with ‘b’.

‘ * ’ is not a construct by itself; it is a suffix, which means the preceding regular expression is to
be repeated as many times as possible. In ‘fo * ’, the ‘* ’ applies to the ‘o’, so ‘fo * ’ matches
‘ f ’ followed by any number of ‘o’’s.

The case of zero ‘o’’s is allowed: ‘fo * ’ does match ‘f ’.

‘ * ’ always applies to thesmallestpossible preceding expression. Thus, ‘fo * ’ has a repeat-
ing ‘o’, not a repeating ‘fo ’.

‘+’ ‘ +’ is like ‘ * ’ except that at least one match for the preceding pattern is required for ‘+’.
Thus, ‘c[ad]+r ’ does not match ‘cr ’ but does match anything else that ‘c[ad] * r ’ would
match.

‘?’ ‘ ?’ is like ‘ * ’ except that it allows either zero or one match for the preceding pattern. Thus,
‘c[ad]?r ’ matches ‘cr ’ or ‘ car ’ or ‘ cdr ’, and nothing else.

‘ [...] ’ ‘ [’ begins acharacter set, which is terminated by a ‘] ’. In the simplest case, the charac-
ters between the two form the set. Thus, ‘[ad] ’ matches either ‘a’ or ‘ d’, and ‘[ad] * ’
matches any string of ‘a’’s and ‘d’’s (including the empty string), from which it follows
that ‘c[ad] * r ’ matches ‘car ’, et cetera.

Character ranges can also be included in a character set, by writing two characters with a
‘ - ’ between them. Thus, ‘[a-z] ’ matches any lower-case letter. Ranges may be intermixed
freely with individual characters, as in ‘[a-z$%.] ’, which matches any lower case letter or
‘$’, ‘ %’ or period.

Note that the usual special characters are not special any more inside a character set. A
completely different set of special characters exists inside character sets: ‘] ’, ‘ - ’ and ‘ˆ ’.

To include a ‘] ’ in a character set, you must make it the first character. For example, ‘[]a] ’
matches ‘] ’ or ‘ a’. To include a ‘- ’, you must use it in a context where it cannot possibly
indicate a range: that is, as the first character, or immediately after a range.

Note that when searching in UTF-8 text, a character set may contain US-ASCII characters
only.

22 ne ’s manual

‘ [ˆ ...] ’ ‘ [ˆ ’ begins acomplement character set, which matches any character except the ones spec-
ified. Thus, ‘[ˆa-z0-9A-Z] ’ matches all charactersexceptletters and digits. Also in this
case, when searching in UTF-8 text a complemented characterset may contain US-ASCII
characters only.

‘ ˆ ’ is not special in a character set unless it is the first character. The character following
the ‘̂ ’ is treated as if it were first (it may be a ‘- ’ or a ‘] ’).

‘ ˆ ’ is a special character that matches the empty string – but only if at the beginning of a line in
the text being matched. Otherwise it fails to match anything. Thus, ‘̂ foo ’ matches a ‘foo ’
that occurs at the beginning of a line.

‘$’ is similar to ‘ˆ ’ but matches only at the end of a line. Thus, ‘xx * $’ matches a string of one
or more ‘x ’’s at the end of a line.

‘ \ ’ has two functions: it quotes the above special characters (including ‘\ ’), and it introduces
additional special constructs.

Because ‘\ ’ quotes special characters, ‘\$ ’ is a regular expression that matches only ‘$’,
and ‘\[’ is a regular expression that matches only ‘[’, and so on.

For the most part, ‘\ ’ followed by any character matches only that character. However,
there are several exceptions: characters which, when preceded by ‘\ ’, are special constructs.
Such characters are always ordinary when encountered on their own.

‘ | ’ specifies an alternative. Two regular expressionsa and b with ‘ | ’ in between form an
expression that matches anything that eithera or b will match.

Thus, ‘foo|bar ’ matches either ‘foo ’ or ‘ bar ’ but no other string.

‘ | ’ applies to the largest possible surrounding expressions.Only a surrounding ‘(...) ’
grouping can limit the grouping power of ‘| ’.

‘ (...) ’ is a grouping construct that serves three purposes:

1. To enclose a set of ‘| ’ alternatives for other operations. Thus, ‘(foo|bar)x ’ matches
either ‘foox ’ or ‘ barx ’.

2. To enclose a complicated expression for the postfix ‘* ’ to operate on. Thus, ‘ba(na) * ’
matches ‘bananana ’ et cetera, with any (zero or more) number of ‘na ’’s.

3. To mark a matched substring for future reference.

This last application is not a consequence of the idea of a parenthetical grouping; it is a
separate feature that happens to be assigned as a second meaning to the same ‘(...) ’
construct because there is no conflict in practice between the two meanings. Here is an
explanation of this feature:

‘ \ digit’ After the end of a ‘(...) ’ construct, the matcher remembers the beginning and end of the
text matched by that construct. Then, later on in the regularexpression, you can use ‘\ ’
followed by digit to mean “match the same text matched thedigit ’th time by the ‘(...

) ’ construct.” The ‘(...) ’ constructs are numbered in order of commencement in the
regexp.

The strings matching the first nine ‘(...) ’ constructs appearing in a regular expression
are assigned numbers 1 through 9 in order of their beginnings. ‘ \1 ’ through ‘\9 ’ may be
used to refer to the text matched by the corresponding ‘(...) ’ construct.

For example, ‘(.+)\1 ’ matches any non empty string that is composed of two identical
halves. The ‘(.+) ’ matches the first half, which may be anything non empty, but the ‘\1 ’
that follows must match the same exact text.

‘ \b ’ matches the empty string, but only if it is at the beginning or end of a word. Thus,
‘ \bfoo\b ’ matches any occurrence of ‘foo ’ as a separate word. ‘\bball(s|)\b ’ matches
‘ball ’ or ‘ balls ’ as a separate word.

Chapter 3: Reference 23

‘ \B ’ matches the empty string, provided it isnot at the beginning or end of a word.

‘ \< ’ matches the empty string, but only if it is at the beginning of a word.

‘ \> ’ matches the empty string, but only if it is at the end of a word.

‘ \w ’ matches any word-constituent character. These are US-ASCII letters, numbers and the
underscore, independently on the buffer encoding.

‘ \W’ matches any character that is not a word-constituent.

3.8.2 Replacing regular expressions
Also the replacement string has some special feature when doing a regular expression search and replace.
Exactly as during the search, ‘\ ’ followed by digit stands for “the text matched thedigit ’th time by the
‘ (...) ’ construct in the search expression”. Moreover, ‘\0 ’ represent the whole string matched by the
regular expression. Thus, for instance, the replace string‘ \0\0 ’ has the effect of doubling any string
matched.

Another example: if you search for ‘(a+)(b+) ’, replacing with ‘\2x\1 ’, you will match any string
composed by a series of ‘a’’s followed by a series of ‘b’’s, and you will replace it with the string obtained
by moving the ‘a’ in front of the ‘b’’s, adding moreover ‘x ’ inbetween. For instance, ‘aaaab ’ will be
matched and replaced by ‘bxaaaa ’.

Note that the backslash character can escape itself. Thus, to put a backslash in the replacement string,
you have to use ‘\\ ’.

3.9 Automatic Preferences
Automatic preferences let you set up a custom configuration that is automatically used whenever you
open a file with a given extension. For instance, you may prefer a TAB size of three when editing C
sources, but eight could be more palatable when writing electronic mail.

The use of autoprefs is definitely straightforward. You simply use the ‘Save AutoPrefs ’ menu
item (or theSaveAutoPrefs command; see Section 4.9.25 [SaveAutoPrefs], page 43) whenthe current
document has the given extension and the current configuration suits your tastes. The internal state
of a series of options will be recorded as a macro containing commands that reproduce the current
configuration. The macro is then saved in the ‘˜/.ne ’ directory (which is created if necessary) with the
name given by the extension, postfixed with ‘#ap ’. Thus, the C sources automatic preferences file will
be named ‘c#ap ’, the one for TEX files ‘tex#ap ’, and so on.

Macros are generated with short or long command names depending on the status of the verbose
macros flag. See Section 4.9.16 [VerboseMacros], page 41.

Automatic preferences files are loaded and executed whenever a file with a known extension is
opened. Note that you can manually edit such files, and even insert commands, but any command that
does something other than setting a flag will be rejected, andan error message will be issued.

3.10 Emergency Save
Whenne is interrupted by an abnormal event (for instance, the crashof your terminal), it will try to save
all unsaved documents in its current directory. Named documents will have their names prefixed with
a ‘#’. Unnamed documents will be given names made up of hexadecimal numbers obtained by some
addresses in memory that will make them unique.

3.11 UTF-8 Support
Since version 1.30,ne can manipulate UTF-8 files and supports UTF-8 when communicating with the
user. At startup,ne fetches the system locale description, and checks whether it contains the string
‘utf8 ’ or ‘ utf-8 ’. In this case, it starts communicating with the user using UTF-8. This behaviour can

24 ne ’s manual

be modified either using a suitable command line option (see see Section 3.1 [Arguments], page 11), or
using Section 4.9.31 [UTF8IO], page 45. This makes it possible to display and read from the keyboard a
wide range of characters.

Independently of the input/output encoding,ne keeps track of the encoding of each buffer.ne does
not try to select a particular coding on a buffer, unless it isforced to do so, for instance because a certain
character is inserted. Once a buffer has a definite encoding,however, it keeps it forever.

More precisely, every buffer may be in one of threeencoding modes: US-ASCII, when it is entirely
composed of US-ASCII characters; 8-bit, if it contains also other characters, but it is not UTF-8 encoded;
and finally, UTF-8, if it is UTF-8-encoded.

The behaviour ofne in US-ASCII and 8-bit mode is similar to previous versions: each byte in the
buffer is considered a separate character.

There are, however, two important differences: first, if I/Ois not UTF-8 encoded,any encoding of
the ISO-8859 family will work flawlessly, asne merely reads bytes from the keyboard and displays
bytes on the screen. On the contrary, in the case of UTF-8 input/outputne must take a decision as to
which encoding is used for non-UTF-8 buffers, and presentlythis is hardwired to ISO-8859-1. Second,
since version 1.34, 8-bit buffers use localized casing and character type functions. This means that case-
insensitive searches or case foldings will work with, say, Cyrillic characters, provided that your locale is
set correctly.

In UTF-8 mode, instead,ne interprets the bytes in the buffer in a different way—several bytes may
encode a single character. The whole process is completely transparent to the user, but if you really want
to look at the buffer content, you can switch to 8-bit mode (see see Section 4.9.29 [UTF8], page 44).

For most operations, UTF-8 support should be transparent. However, in some cases, in particular
when mixing buffers with different encodings,ne will refuse to perform certain operations because of
incompatible encodings.

The main limitation of UTF-8 buffers is that when searching for a regular expression in a UTF-8
text, character sets may only contain US-ASCII characters (see see Section 3.8 [Regular Expressions],
page 20). You can, of course, partially emulate a full UTF-8 character set implementation specifying the
possible alternatives using ‘| ’ (but you have no ranges).

Chapter 4: Commands 25

4 Commands

Everythingne can do is specified through a command. Commands can be manuallytyped on the com-
mand line, bound to a key, to a menu item, or grouped into macros for easier manipulation. If you want
to fully exploit the power ofne, you will be faced sooner or later with using commands directly.

4.1 General Guidelines
Every command inne has a long and a short name. Except in a very few cases, the short name is given by
two or three letters that are the initials of the words that form the long name. For instance,SearchBack

has short nameSB, SaveDefPrefs has the short nameSDP, andAdjustView ’s short name isAV. There
are some exceptions however. The most frequently used commands such asExit have one-letter short
names (X). Also some commands use a different short name to avoid clashes with a more common
command’s short name. For example,StatusBar ’s short name isST rather thanSB to avoid clashes
with SearchBack ’s short name.

A command always has at most one argument. This is a chosen limitation that allowsne ’s parsing
of commands and macros to be very fast. Moreover, it nullifies nearly all problems related to delimiters,
escape characters, and the like. The unique argument can be anumber, a string, or a flag modifier. You
can easily distinguish these three cases even without this manual by looking at what theHelp command
says about the given command. Note that when a command’s argument is enclosed in square brackets, it
is optional.

Strings are general purpose arguments. Numbers are used to modify internal parameters, such as the
size of aTAB. A flag modifier is an optional number that is interpreted as follows:

• 0 means clearing the flag;

• 1 (or any positive number) means setting the flag;

• no number means toggling the flag.

Thus,StatusBar 1 will activate that status bar, whileI will toggle insert/overstrike. This design
choice is due to the fact that most of the time during interactive editing you need tochangea flag. For
instance, you may be in insert mode and you want to overstrike, or vice versa. Absolute settings (those
with a number) are useful essentially for macros. It is reasonable to use the fastest approach for the most
frequent interactive event. When a number or a string is required and the argument is optional, most of
the time you will be prompted to type the argument on the command line.

As for the input line, for numeric arguments you can choose between decimal, octal and hexadecimal
notation in the standard way: a number starting with ‘0’ is considered in octal, a number starting with
‘0x ’ is considered in hexadecimal, and in all other cases decimal base is assumed.

When a number represents how many timesne should repeat an action, it is always understood that
the command will terminate when the conditions for applyingit are no longer true. For instance, the
Paragraph command accepts the number of paragraphs to format. But if notenough paragraphs exists
in the text, only the available ones will be formatted.

This easily allows performing operations on an entire document by specifying preposterously huge
numbers as arguments.ToUpper 200000000 will make all the words in the document upper case. (At
least, one would hope so!) Note that this is much faster than recording a macro with the command
ToUpper in it and playing it many times because in the former case the command has to be parsed just
one time.

In any case, if a macro or a repeated operation takes too long,you can stop it using the interrupt key
(CONTROL-\).

To handle situations such as an argument string starting with a space,ne implements a simple mech-
anism whereby you can enclose any string argument in double quotes. If the first non-blank character
after the command and last character of the command line are double quotes, the quotes will be removed

26 ne ’s manual

and whatever is left will be used as the string argument. For example, theFind command to find a space
could be entered on the command line or in a macro asFind " " . The only case needing special treat-
ment is when a string starts and ends with double quotes. The commandFind ""quote"" would locate
the next occurrence of the string ‘"quote" ’ (including the double quotes). However,Find onequote"

wouldn’t require special treatment because the command argument doesn’t both start and end with a
double quote.

4.2 File Commands
These commands allow opening and saving files. They all act inthe context of the current document
(i.e., the document displayed when the command is issued).

4.2.1 Open
Syntax:Open [filename]

Abbreviation:O

loads the file specified by thefilenamestring into the current document.

If the optionalfilenameargument is not specified, the file requester is opened, and you are prompted
to select a file. (You can inhibit the file requester opening byusing theNoFileReq command; see
Section 4.9.7 [NoFileReq], page 39.)

If you escape from the file requester, you can input the file name on the command line, the default
being the current document name, if available.

If the current document is marked as modified at the time the command is issued, you have to confirm
the action.

4.2.2 OpenNew
Syntax:OpenNew [filename]

Abbreviation:ON

is the same asOpen, but loads the file specified by thefilenamestring into a new document. See Sec-
tion 4.2.1 [Open], page 26.

4.2.3 Save
Syntax:Save

Abbreviation:S

saves the current document using its default file name.

If the current document is unnamed, the file requester will open and you will be prompted to select
a file. (You can inhibit the file requester opening by using theNoFileReq command; see Section 4.9.7
[NoFileReq], page 39.)

If you escape from the file requester, you can input the file name on the command line.

4.2.4 SaveAs
Syntax:SaveAs [filename]

Abbreviation:SA

saves the current document using the specified string as the file name.

If the optional filename argument is not specified, the file requester will open and youwill be
prompted to select a file. (You can inhibit the file requester opening by using theNoFileReq command;
see Section 4.9.7 [NoFileReq], page 39.)

If you escape from the file requester, you can enter the file name on the input line, the default being
the current document name, if available.

Chapter 4: Commands 27

4.3 Document Commands
These commands allow manipulation of the circular list of documents inne.

4.3.1 Quit
Syntax:Quit

Abbreviation:Q

closes all documents and exits. If any documents are modified, you have to confirm the action.

4.3.2 Exit
Syntax:Exit

Abbreviation:X

saves all modified documents, closes them and exits. If any documents cannot be saved, the action is
suspended and an error message is issued.

4.3.3 NewDoc
Syntax:NewDoc

Abbreviation:N

creates a new, empty, unnamed document that becomes the current document. The position of the docu-
ment in the document list is just after the current document.The preferences of the new document are a
copy of the preferences of the current document.

4.3.4 Clear
Syntax:Clear

Abbreviation:CL

destroys the contents of the current document and of its undobuffer. Moreover, the document becomes
unnamed. If your current document is marked as modified, you have to confirm the action.

4.3.5 CloseDoc
Syntax:CloseDoc

Abbreviation:CD

closes the current document. The document is removed fromne ’s list and, if it is the only existing
document,ne exits. If the document was modified since it was last saved, you have to confirm the action.

4.3.6 NextDoc
Syntax:NextDoc

Abbreviation:ND

sets as current document the next document in the document list.

4.3.7 PrevDoc
Syntax:PrevDoc

Abbreviation:PD

sets as current document the previous document in the document list.

4.3.8 SelectDoc
Syntax:SelectDoc

Abbreviation:SD

displays a requester containing the names of all the documents in memory. You select whichever docu-
ment you want to become the current document.

28 ne ’s manual

If you escape from the requester the requester goes away and you are returned to your original current
document.

SelectDoc is especially useful if you have a large number of documents open (say, more than 10).
Otherwise,NextDoc andPrevDoc should be enough. See Section 4.3.6 [NextDoc], page 27, and Sec-
tion 4.3.7 [PrevDoc], page 27.

4.4 Clip Commands
These commands control the clipping system. Aclip is a snippet of text separate from any document,
which you can save to a file or insert into a document. You can select text in a document and copy it to
a clip, optionally deleting it from your text. You can also load text directly from a file into a clip.ne can
have any number of clips, which are distinguished by an integer. Most clip commands act on the current
clip, which can be selected withClipNumber . Clips can be copied and pasted in two ways—normally
(as lines of text) or vertically (as a rectangular block of characters).

Note that by using theThrough command you can automatically pass a (possibly vertical) block of
text through any filter (such assort underUN* X).

4.4.1 Mark
Syntax:Mark [0|1]

Abbreviation:M

sets the mark at the current position or cancels the previousmark. The mark can then be used to perform
clip operations. The clip commands act on the characters lying between the mark and the cursor.

If you invokeMark with no arguments, it will toggle the mark. If you specify 0 or1, the mark will be
canceled or set to the current position, respectively. A capital ‘M’ appears on the status bar, if the mark is
active.

See Section 4.6.1 [Record], page 33, for the reason the mark isimplemented as a flag.

4.4.2 MarkVert
Syntax:MarkVert [0|1]

Abbreviation:MV

is the same asMark , but the mark is interpreted as vertical by the clip handlingcommands. This means
that the region manipulated by the cut/paste commands is therectangle having as vertices the cursor
and the mark. Moreover, a capital ‘V’, rather than a capital ‘M’, will appear on the status bar. Vertical
cut/paste operations are useful for handling structured program indentation.

4.4.3 Copy
Syntax:Copy [n]

Abbreviation:C

copies the contents of the characters lying between the cursor and the mark into the clip specified by the
optional numeric argument, the default clip being the current clip, which can be set with theClipNumber

command; see Section 4.4.10 [ClipNumber], page 29. If the current mark was vertical, the rectangle of
characters defined by the cursor and the mark is copied instead.

4.4.4 Cut
Syntax:Cut [n]

Abbreviation:CU

acts just likeCopy, but also deletes the block being copied.

Chapter 4: Commands 29

4.4.5 Paste
Syntax:Paste [n]

Abbreviation:P

pastes the contents of specified clip into the current document at the cursor position. If you don’t specify
the clip number, the current clip is used; Specify which clipis current with Section 4.4.10 [ClipNumber],
page 29.

4.4.6 PasteVert
Syntax:PasteVert [n]

Abbreviation:PV

vertically pastes the contents of the specified clip, the default being the current clip. Each line of the clip
is inserted on consecutive lines at the horizontal cursor position.

4.4.7 Erase
Syntax:Erase

Abbreviation:E

acts likeCut , but the block is just deleted and not copied into any clip.

4.4.8 OpenClip
Syntax:OpenClip [filename]

Abbreviation:OC

loads the given file name as the current clip, just as if you cutor copied it from the current document; see
Section 4.4.3 [Copy], page 28.

If the optional filename argument is not specified, the file requester will open and youwill be
prompted to select a file. (You can inhibit the file requester opening by using theNoFileReq command;
see Section 4.9.7 [NoFileReq], page 39.)

If you escape from the file requester, you can enter the file name on the input line.

4.4.9 SaveClip
Syntax:SaveClip [filename]

Abbreviation:SC

saves the current clip on the given file name.

If the optional filename argument is not specified, the file requester will open and youwill be
prompted to select a file. (You can inhibit the file requester opening by using theNoFileReq command;
see Section 4.9.7 [NoFileReq], page 39.)

If you escape from the file requester, you can enter the file name on the input line.

4.4.10 ClipNumber
Syntax:ClipNumber [n]

Abbreviation:CN

sets the current clip number. This number is used byOpenClip andSaveClip , and byCopy, Cut and
Paste if they are called without any argument. Its default value iszero.n is limited only by the integer
size of the machinene is running on.

If the optional argumentn is not specified, you can enter it on the input line, the default being the
current clip number.

30 ne ’s manual

4.4.11 Through
Syntax:Through [command]

Abbreviation:T

asks the shell to executecommand, piping the current block in the standard input, and replacing it with
the output of the command. This command is most useful with filters, such assort . Its practical effect
is to pass the block through the specified filter.

Note that by selecting an empty block (or equivalently by having the mark unset) you can use
Through to insert the output of anyUN* X command in your file.

If the optional argumentcommandis not specified, you can enter it on the input line.

4.5 Search Commands
These commands control the search system.ne offers two complementary searching techniques: a
simple, fast exact matching search (optionally ignoring case), and a very flexible and powerful, but
slower, regular expression search based on the GNUregex library (again, optionally case insensitive).

4.5.1 Find
Syntax:Find [pattern]

Abbreviation:F

searches for the given pattern. The cursor is positioned on the first occurrence of the pattern, or an error
message is given. The direction and the case sensitivity of the search are established by the value of the
back search and case sensitive search flags. See Section 4.5.8 [SearchBack], page 32, and Section 4.5.9
[CaseSearch], page 32.

If the optional argumentpatternis not specified, you can enter it on the input line, the default being
the last pattern used.

4.5.2 FindRegExp
Syntax:FindRegExp [pattern]

Abbreviation:FX

searches the current document for the given extended regular expression (see Section 3.8 [Regular Ex-
pressions], page 20) . The cursor is positioned on the first string matching the expression. The direction
and the kind of search are established by the value of the backsearch and case sensitive search flags. See
Section 4.5.8 [SearchBack], page 32, and Section 4.5.9 [CaseSearch], page 32.

If the optional argumentpatternis not specified, you can enter it on the input line, the default being
the last pattern used.

4.5.3 Replace
Syntax:Replace [string]

Abbreviation:R

moves to the first match of the most recent find string or regular expression and prompts you for which
action to perform. You can choose among:

• replacing the string found with the given string and moving to the next match (‘Yes ’);

• moving to the next match (‘No’);

• replacing the string found with the given string, and stopping the search (‘Last ’);

• stopping the search immediately (‘Quit ’);

• replacingall occurrences of the find string with the given string (‘All ’);

• reversing the search direction (‘Backward ’ or ‘ Forward ’); this choice will also modify the value
of the back search flag. See Section 4.5.8 [SearchBack], page 32.

Chapter 4: Commands 31

Replace is mainly useful for interactive editing.ReplaceOnce , ReplaceAll andRepeatLast are
more suited to macros.

If no find string was ever specified, you can enter it on the input line. If the optional argumentstring
is not specified, you can enter it on the input line, the default being the last string used. When the last
search was a regular expression search, there are some special features you can use in the replace string
(see Section 3.8 [Regular Expressions], page 20) . See Section 4.5.2 [FindRegExp], page 30.

Note that normally a search starts just one character after the cursor. However, whenReplace is
invoked, the search starts at the character justunderthe cursor, so that you can safelyFind a pattern and
Replace it without having to move back.

Warning: when recording a macro with Section 4.6.1 [Record], page 33, there is no trace in the macro of
your interaction withne during the replacement process. When the macro is played, you will again have
to choose which actions to perform. If you want to apply automatic replacement of strings for a certain
number of times, you should look at Section 4.5.4 [ReplaceOnce], page 31, Section 4.5.5 [ReplaceAll],
page 31, and Section 4.5.6 [RepeatLast], page 31.

4.5.4 ReplaceOnce
Syntax:ReplaceOnce [string]

Abbreviation:R1

acts just likeReplace , but without any interaction with you (unless there is no findstring). The first
string matched by the last search pattern, if it exists, is replaced by the given replacement string.

If the optional argumentstring is not specified, you can enter it on the input line, the default being
the last string used.

4.5.5 ReplaceAll
Syntax:ReplaceAll [string]

Abbreviation:RA

is similar toReplaceOnce , but replacesall occurrences of the last search pattern with the given replace-
ment string.

If the optional argumentstring is not specified, you can enter it on the input line, the default being
the last string used.

Note thatUndo will restoreall the occurrences of the search pattern replaced byReplaceAll . See
Section 4.7.1 [Undo], page 34.

4.5.6 RepeatLast
Syntax:RepeatLast [times]

Abbreviation:RL

repeats for the given number of times the last find or replace operation (with replace we mean here a
single replace, even if the lastReplace operation ended with a global substitution).

RepeatLast is especially useful for researching a given number of times, or replacing something a
given number of times. The standard technique for accomplishing this is:

1. Find (or FindRegExp) the string you are interested in;

2. if you want to repeat a replace operation,ReplaceOnce with the replacement string you are inter-
ested in;

3. now issue aRepeatLast n-1 command, wheren is the number of occurrences you wanted to skip
over, or replace.

The important thing about this sequence of actions is that itwill work this way even in a macro. The
Replace command cannot be used in a macro unless you really want to interact withne during the
macro execution. Avoiding interaction during macros is theprimary reason the commandsReplaceAll

andReplaceOnce are provided.

32 ne ’s manual

4.5.7 MatchBracket
Syntax:MatchBracket

Abbreviation:MB

moves the cursor to the bracket associated with the bracket the cursor is on. If the cursor is not on a
bracket, or there is no bracket associated with the current one, an error message is issued. Recognized
brackets are ‘{} ’, ‘ () ’, ‘ [] ’ and ‘<>’.

4.5.8 SearchBack
Syntax:SearchBack [0|1]

Abbreviation:SB

sets the back search flag. When this flag is true, every search or replacement command is performed
backwards.

If you invokeSearchBack with no arguments, it will toggle the flag. If you specify 0 or 1, the flag
will be set to false or true, respectively. A lower case ‘b’ will appear on the status bar if the flag is true.

Note that this flag also can be set through interactions with theReplace command. See Section 4.5.3
[Replace], page 30.

4.5.9 CaseSearch
Syntax:CaseSearch [0|1]

Abbreviation:CS

sets the case sensitivity flag. When this flag is true, the search commands distinguish between the upper
and lower case letters. By default the flag is false.

If you invokeCaseSearch with no arguments, it will toggle the flag. If you specify 0 or 1, the flag
will be set to false or true, respectively. A lower case ‘c ’ will appear on the status bar if the flag is true.

4.5.10 AutoComplete
Syntax:AutoComplete [prefix]

Abbreviation:AC

attempts to extend theprefix using matching words from your open documents, and inserts the extended
text into your document. If theprefix can be extended unambiguously, the matching text is immediately
inserted into your document. Otherwise,ne displays a selection of all words in open documents that
matchprefix, and inserts the word you select into the current document. Matching words from the
current document display normally; those which only exist in other open documents are bold and with
a trailing asterisk. If noprefix is given on the command line, or ifAutoComplete is selected from
theExtras menu or using a keyboard shortcut, the word characters to theimmediate left of the cursor
in the current document are used as theprefix. Note that if no word characters are to the left of the
cursor, or theprefix given on the command line is an empty string (""), then all words in all your
open documents are displayed. Prefix matches may be case sensitive or not depending on the current
document’sCaseSearch flag state. See Section 4.5.9 [CaseSearch], page 32.

4.6 Macros Commands
Macros are lists of commands. Any series of operations that has to be performed frequently is a good
candidate for being a macro.

Macros can be written manually: they are just ASCII files, each command occupying a line (lines
starting with ‘#’ are considered comments; lines starting with other nonalphabetical characters are
presently ignored). But the real power of macros is that they be recorded during the normal usage of
ne. When the recording terminates, the operations that have been recorded can be saved for later use.
Note that each document has a current macro (the last macro that has been opened or recorded).

Chapter 4: Commands 33

4.6.1 Record
Syntax:Record [0|1]

Abbreviation:Rec

sets the recording state flag. When this flag becomes true,ne starts recording your actions in a new
macro. When it becomes false, the macro recording is stopped, and the macro can be played or saved via
Section 4.6.2 [Play], page 33, or Section 4.6.5 [SaveMacro],page 34.

If you call invokeRecord with no arguments, it will toggle the flag. If you specify 0 or 1, the flag
will be set to false or true, respectively. An upper case ‘R’ will appear on the status bar if the flag is true.

The reason for providing a flag instead of an explicit start/stop recording command pair is that this
way it is possible to bind both starting and stopping macro recording to a single key while still being
able to specify “absolute” menu items (by usingRecord 0 andRecord 1). For instance, the default key
binding forCONTROL-T is simplyRecord , which means that this shortcut can be used both for initiating
and for terminating a macro recording.

4.6.2 Play
Syntax:Play [times]

Abbreviation:PL

plays the current macro for the given number of times. If the optional argumenttimes is not specified,
you can enter it on the input line.

A (possibly iterated) macro execution terminates as soon asits stream of instructions is exhausted,
or one of its commands returns an error. This means that, for instance, you can perform some complex
operation on all the lines containing a certain pattern by recording a macro that searches for the pattern
and performs the operation, and then playing it a preposterously huge number of times.

Execution of a macro can be interrupted byCONTROL-\.

4.6.3 Macro
Syntax:Macro [filename]

Abbreviation:MA

executes the given file name as a macro.

If the optionalfilenameargument is not specified, the file requester is opened, and you are prompted
to select a file. (You can inhibit the file requester opening byusing theNoFileReq command; see
Section 4.9.7 [NoFileReq], page 39.)

If you escape from the file requester, you can input the file name on the command line.

Note that macros whose names do not conflict with a command canbe called without usingMacro .
Wheneverne is required to perform a command it cannot find in its internaltables, it will look for a
macro by that name in the current directory. If this search also fails,ne looks in ‘̃ /.ne ’ and finally
in ne ’s global directory (defined whenne was built, or in a place specified by yourNE_GLOBAL_DIR

environment variable) for a macro file by that name.

Warning: the first time a macro is executed it is cached into a hash tableand is keptforeverin memory
unless theUnloadMacros command is issued; see Section 4.6.6 [UnloadMacros], page 34. The next
time a macro with the same file name is invoked, the cached listis searched for it before accessing the
file using a case insensitive string comparison. That is, if you call ˜/foobar/macro , a subsequent call
for /usr/MACRO or even justMaCrOwill use the cached version of˜/foobar/macro . Note that the
cache table is global tone and not specific to any single document. This greatly improves efficiency
when macros are used repeatedly.

4.6.4 OpenMacro
Syntax:OpenMacro [filename]

Abbreviation:OM

34 ne ’s manual

loads the given file name as the current macro just as if youRecord ed it; see Section 4.6.1 [Record],
page 33.

If the optionalfilenameargument is not specified, the file requester is opened, and you are prompted
to select a file. (You can inhibit the file requester opening byusing theNoFileReq command; see
Section 4.9.7 [NoFileReq], page 39.)

If you escape from the file requester, you can input the file name on the command line.

4.6.5 SaveMacro
Syntax:SaveMacro [filename]

Abbreviation:SM

saves the current macro in a file with the given name.

If the optionalfilenameargument is not specified, the file requester is opened, and you are prompted
to select a file. (You can inhibit the file requester opening byusing theNoFileReq command; see
Section 4.9.7 [NoFileReq], page 39.)

If you escape from the file requester, you can input the file name on the command line.

SaveMacro is of course most useful for saving macros you just recorded.The macros can then be
loaded as normal text files for further editing, if necessary. Note thatSaveMacro convertsInsertChar

commands into a possibly smaller number ofInsertString commands. This makes macros easier to
read and edit. See Section 4.11.1 [InsertChar], page 49, and Section 4.11.2 [InsertString], page 49.

4.6.6 UnloadMacros
Syntax:UnloadMacros

Abbreviation:UM

frees the macro cache list. After this command, theMacro command will be forced to search for the file
containing the macros it has to play.

UnloadMacros is especially useful if you are experimenting with a macro bound to some keystroke,
and you are interactively modifying it and playing it.UnloadMacros forcesne to look for the newer
version available.

4.7 Undo Commands
The following commands control the undo system.

4.7.1 Undo
Syntax:Undo [n]

Abbreviation:U

undoes the lastn actions. Ifn is not specified, it is assumed to be one. After you undo a number of
actions, you canRedo all or some of them; see Section 4.7.2 [Redo], page 34. However, if you take any
new actions after havingUndone some, you can no longerRedo thoseUndone actions. See Section 4.7.2
[Redo], page 34.

4.7.2 Redo
Syntax:Redo [n]

Abbreviation:RE

redoes the lastn actions undone byUndo (as long as you don’t take any actions that change the text
between theUndo andRedo commands). Ifn is not specified, it is assumed to be one. You can only
Redo actions that have beenUndone. See Section 4.7.1 [Undo], page 34.

Chapter 4: Commands 35

4.7.3 UndelLine
Syntax:UndelLine [n]

Abbreviation:UL

inserts at the cursor position forn times the last non-empty line that was deleted with theDeleteLine

command. Ifn is not specified, it is assumed to be one.

UndelLine is most useful in that it allows a very fast way of moving one line around. Just delete it,
and undelete it somewhere else. It is also an easy way to replicate a line without getting involved with
clips.

Note that UndelLine works independently of the status of the undo flag. See Section 4.7.4
[DoUndo], page 35.

4.7.4 DoUndo
Syntax:DoUndo [0|1]

Abbreviation:DU

sets the flag that enables or disables the undo system. When you turn the undo system off, all the recorded
actions are discarded, and the undo buffers are reset.

If you invokeDoUndo with no arguments, it will toggle the flag. If you specify 0 or 1, the flag will be
set to false or true, respectively. A lower case ‘u’ will appear on the status bar if the flag is true.

The usefulness of this option relies in the fact that the undosystem is a major memory eater. If you
plan to do massive editing (say, cutting and pasting megabytes of text) it is a good idea to disable the
undo system, both for improving (doubling) performance andfor using less (half) memory. Except for
this, on a virtual memory system we see no reason to not keep the undo flag always true, and this is
indeed the default.

4.8 Formatting Commands
The following commands allow simple formatting operationson the text. Note that forne a paragraph is
delimited by an empty line.

4.8.1 Center
Syntax:Center [n]

Abbreviation:CE

centersn lines from the cursor position onwards. Ifn is not specified, it is assumed to be one. The
lines are centered with spaces, relatively to the value of the right margin as set by theRightMargin

command. See Section 4.8.6 [RightMargin], page 36.

4.8.2 Paragraph
Syntax:Paragraph [n]

Abbreviation:PA

reformatsn paragraphs from the cursor position onwards. Ifn is not specified, it is assumed to be
one. The paragraph are formatted relatively to the value of the right margin as set by theRightMargin

command. See Section 4.8.6 [RightMargin], page 36.

ne ’s notion of a paragraph includes the current non-blank line(regardless of its leading white space)
and all subsequent non-blank lines that have identical (to each other’s—not to the first line’s) leading
white space. Therefore your paragraphs can have various first line indentations and left margins.

After the Paragraph command completes, your cursor will be positioned on the first non-blank
character after the last reformatted paragraph (or, if there is no such character, at the end of the document).

If you think paragraphing should insert “smart” spaces after full stops and colons, and do other
“smart” things such as justification, you should consider using a text formatter. TEX is usually the best
choice.

36 ne ’s manual

4.8.3 ToUpper
Syntax:ToUpper [n]

Abbreviation:TU

shifts to upper case the letters from the cursor position up to the end of a word, and moves to the first
letter of next word forn times.

The description of the command may seem a little bit cryptic.What is really happening is that there
are situations where you only want to upper case the last partof a word. In this case, you just have to
position the cursor in the first character you want to upper case, and useToUpper with no argument.

If you applyToUpper on the first character of a word, it will just upper casen words.

4.8.4 ToLower
Syntax:ToLower [n]

Abbreviation:TL

acts exactly likeToUpper , but lowers the case. See Section 4.8.3 [ToUpper], page 36.

4.8.5 Capitalize
Syntax:Capitalize [n]

Abbreviation:CA

acts exactly likeToUpper , but capitalizes, that is, makes the first letter upper case and the other ones
lower case. See Section 4.8.3 [ToUpper], page 36.

4.8.6 RightMargin
Syntax:RightMargin [n]

Abbreviation:RM

sets the right margin for all formatting operations, and forWordWrap. See Section 4.8.7 [WordWrap],
page 36.

If the optional argumentn is not specified, you can enter it on the input line, the default being the
current value of the right margin.

A value of zero forn will force ne to use (what it thinks it is) the current screen width as rightmargin.

4.8.7 WordWrap
Syntax:WordWrap [0|1]

Abbreviation:WW

sets the word wrap flag. When this flag is true,ne will automatically break lines of text longer than the
current right margin while you type them. See Section 4.8.6 [RightMargin], page 36.

If you invokeWordWrap with no arguments, it will toggle the flag. If you specify 0 or 1, the flag will
be set to false or true, respectively. A lower case ‘w’ will appear on the status bar if the flag is true.

4.8.8 AutoIndent
Syntax:AutoIndent [0|1]

Abbreviation:AI

sets the auto indent flag. When this flag is true,ne will automatically insertTABs and spaces on a new
line (created by anInsertLine command, or by automatic word wrapping) in such a way to replicate
the initial spaces of the previous line. Most useful for indenting programs.

If you invokeAutoIndent with no arguments, it will toggle the flag. If you specify 0 or 1, the flag
will be set to false or true, respectively. A lower case ‘a’ will appear on the status bar if the flag is true.

AutoIndent features a nice interaction withUndo. Whenever a new line is created, the insertion of
spaces is recorded as a separate action in the undo buffer (with respect to the line creation). If you are not

Chapter 4: Commands 37

satisfied with the indentation, just give theUndo command and the indentation will disappear (but the
new line will remain in place, since its creation has been recorded as a separate action). See Section 4.7.1
[Undo], page 34.

4.9 Preferences Commands
These commands allow you to set your preferences, that is, the value of a series of flags that modify the
behaviour ofne. (Some of the flag commands, like the command for the indent flag, appear in other
sections.) The status of the flags can be saved and restored later either by writing them out to a file (saved
as a macro that suitably sets the flags) or by pushing them ontoa “preferences stack”. The back search
and the read only flags are not saved, because they do not represent a preference, but rather a temporary
state. The escape time and the turbo parameter are global tone, and are not saved. However, you can
add manually to a preferences file any preferences command (such asEscapeTime or Turbo); usually,
this will be done to the default preferences file ‘˜/.ne/.default#ap ’.

Note that there is an automatic preferences system, which automagically loads a preferences file
related to the extension of the file name. Automatic preferences files are kept in your ‘˜/.ne ’ directory.
They are named as an extension postfixed with ‘#ap ’. Each time you open a file whose name has an
extension for which there is an automatic preferences file, the latter is executed. If you want to inhibit
this process, you can clear the automatic preferences flag. See Section 4.9.2 [AutoPrefs], page 38.

4.9.1 Flags
Syntax:Flags

Abbreviation:FLAG

displays a list of all the status flags for ne and their associated commands. It is not recorded when
recording a macro.

FLAG COMMAND ABBR DESCRIPTION

i Insert I inserts new characters (vs. replacing)

a AutoIndent AI aligns cursor under previous line after <Ret urn>

b SearchBack SB searches search backward rather than forwar d

c CaseSearch CS searches are case sensitive

w WordWrap WW breaks long lines as you type

f FreeForm FF allows cursor to move beyond the end of lines

p AutoPrefs AP use automatic preferences based on file exten sion

v VerboseMacros VM record macros using use long command name s

u DoUndo DU record edits for later undoing

r ReadOnly RO changes are not allowed

t Tabs TAB TAB key inserts TABs instead of spaces

B Binary B affects file loading/saving

M Mark M mark set for line-oriented block operations

V MarkVert MV like mark, but block is rectangle

R Record REC actions are being recorded in a macro

P PreserveCR PCR affects how <CR> chars are loaded from files

C CRLF CRLF use CR/LF as line terminator

* Modified MOD document has been modified since last saved

@ UTF8IO U8IO I/O (keyboard and terminal) are UTF-8 encoded

A/8/U UTF8 U8 the document encoding (ASCII, 8-bit or UTF-8)

TheRequestOrder flag’s state is not indicated on the status bar. See Section 4.9.8 [RequestOrder],
page 39.

38 ne ’s manual

4.9.2 AutoPrefs
Syntax:AutoPrefs [0|1]

Abbreviation:AP

sets the automatic preferences flag. If this flag is true, eachtime anOpen command is executed and a
file is loaded,ne will look for an automatic preferences file in your ‘˜/.ne ’ directory. The preferences
file name is given by the extension of the file loaded, postfixedwith ‘#ap ’. Thus, for instance, C sources
have an associated ‘c#ap ’ file. See Section 3.9 [Automatic Preferences], page 23.

If you invokeAutoPrefs with no arguments, it will toggle the flag. If you specify 0 or 1, the flag
will be set to false or true, respectively. A lower case ‘p’ will appear on the status bar if the flag is true.

4.9.3 Binary
Syntax:Binary [0|1]

Abbreviation:B

sets the binary flag. When this flag is true, loading and savinga document is performed in a different
way. On loading, only nulls are considered newlines; on saving, nulls are saved instead of newlines. This
allows you to edit a binary file, fix some text in it, and save it without modifying anything else. Normally,
line feeds, carriage returns and nulls are considered newlines, so that what you load will have all nulls
and carriage returns substituted by newlines when saved.

Note that since usually binary files contain a great number ofnulls, and every null will be considered
a line terminator, the memory necessary for loading a binaryfile can be several times bigger than the
length of the file itself. Thus, binary editing withinne should be considered not a normal activity, but
rather an exceptional one.

If you invokeBinary with no arguments, it will toggle the flag. If you specify 0 or 1, the flag will be
set to false or true, respectively. An upper case ‘B’ will appear on the status bar if the flag is true.

4.9.4 Insert
Syntax:Insert [0|1]

Abbreviation:I

sets the insert flag. If this flag is true, the text you type is inserted, otherwise it overwrites the existing
characters. This also governs the behaviour of theInsertChar andInsertString commands.

If you invokeInsert with no arguments, it will toggle the flag. If you specify 0 or 1, the flag will be
set to false or true, respectively. A lower case ‘i ’ will appear on the status bar if the flag is true.

4.9.5 FastGUI
Syntax:FastGUI [0|1]

Abbreviation:FG

sets the fast graphical user interface flag. When this flag is true,ne tries to print as little as possible while
displaying menus and the status bar. In particular, menu items are highlighted by the cursor only, the
status bar is not highlighted (which allows printing it withfewer characters) and the hexadecimal code is
not displayed. This option is only (but very) useful if you are usingne through a slow connection.

If you invokeFastGUI with no arguments, it will toggle the flag. If you specify 0 or 1, the flag will
be set to false or true, respectively.

TheFastGUI setting is saved in your ‘˜/.ne/.default#ap ’ file when you use theSaveDefPrefs

command or the ‘Save Def Prefs ’ menu. It is not saved by theSaveAutoPrefs command.

4.9.6 FreeForm
Syntax:FreeForm [0|1]

Abbreviation:FF

Chapter 4: Commands 39

sets the free form flag. When this flag is true, you can move withthe cursor anywhere on the screen, even
where there is no text present (however, you cannot move inside the space expansion of aTAB character).

If you invokeFreeForm with no arguments, it will toggle the flag. If you specify 0 or 1, the flag will
be set to false or true, respectively. A lower case ‘f ’ will appear on the status bar if the flag is true.

The issue free-form-versus-non-free-form is a major religious war that has engaged users from day
one. The due of the implementor is to allow both choices, and to set as default the correct one (in his
humble opinion). In this case, non-free-form.

4.9.7 NoFileReq
Syntax:NoFileReq [0|1]

Abbreviation:NFR

sets the file requester flag. When this flag is true, the file requester is never opened, under any circum-
stances.

If you invokeNoFileReq with no arguments, it will toggle the flag. If you specify 0 or 1, the flag
will be set to false or true, respectively.

4.9.8 RequestOrder
Syntax:RequestOrder [0|1]

Abbreviation:RQO

sets the request order flag. When this flag is true, the requester displays entries in column order. Other-
wise entries are displayed by rows.

If you invoke RequestOrder with no arguments, it will toggle the flag. If you specify 0 or 1, the
flag will be set to false or true, respectively.

The RequestOrder setting is saved in your ‘˜/.ne/.default#ap ’ file when you use the
SaveDefPrefs command or the ‘Save Def Prefs ’ menu. It is not saved by theSaveAutoPrefs

command.

4.9.9 StatusBar
Syntax:StatusBar [0|1]

Abbreviation:ST

sets the status bar flag. When this flag is true, the status bar is displayed at the bottom of the screen.
There are only two reasons to turn off the status bar we are aware of:

• if you are usingne through a slow connection, updating the line/column indicator can really slow
down editing;

• scrolling caused by cursor movement on terminals that do notallow to set a scrolling region can
produce annoying flashes at the bottom of the screen.

If you invokeStatusBar with no arguments, it will toggle the flag. If you specify 0 or 1, the flag
will be set to false or true, respectively.

The StatusBar setting is saved in your ‘˜/.ne/.default#ap ’ file when you use the
SaveDefPrefs command or the ‘Save Def Prefs ’ menu. It is not saved by theSaveAutoPrefs

command.

4.9.10 HexCode
Syntax:HexCode [0|1]

Abbreviation:HC

sets the hex code flag. When this flag is true, the hexadecimal code of the character currently under the
cursor is displayed on the status line.

40 ne ’s manual

4.9.11 ReadOnly
Syntax:ReadOnly [0|1]

Abbreviation:RO

sets the read only flag. When this flag is true, no editing can beperformed on the document (any such
attempt produces an error message). This flag is automatically set whenever you open a file that you
cannot write to. See Section 4.2.1 [Open], page 26.

If you invokeReadOnly with no arguments, it will toggle the flag. If you specify 0 or 1, the flag will
be set to false or true, respectively. A lower case ‘r ’ will appear on the status bar if the flag is true.

4.9.12 EscapeTime
Syntax:EscapeTime [n]

Abbreviation:ET

sets the escape time. The ESCAPE key is recognized as such after n tenths of second. (see Chapter 7
[Motivations and Design], page 57.) Along slow connections,it can happen that the default value of 10
is too low: in this case, escape sequences (e.g., those of thearrow keys) could be erroneously broken into
an escape and some spurious characters. Rising the escape time usually solves this problem. Allowed
values range from 0 to 255. Note that you can accelerate the recognition of the ESCAPE key by hitting
it twice in a row.

Note that the escape time is global tone, and it is not saved. However, you can add anEscapeTime

command manually to a preferences file.

4.9.13 TabSize
Syntax:TabSize [size]

Abbreviation:TS

sets the number of spacesne will use when expanding aTAB character.

If the optional argumentsize is not specified, you can enter it on the input line, the default being the
currentTAB size. Allowed values are strictly between 0 and half the width of the screen.

4.9.14 Tabs
Syntax:Tabs [0|1]

Abbreviation:TAB

sets theTabs flag. When this flag is true, theInsertTab command will insert literalTAB characters.
Otherwise it will insert enough spaces to have the same visual effect.

In normal editing, the TAB key invokes the command"InsertTab 1" . Unlike most others, the TAB
key cannot be mapped to other commands. Thus theTabs flag provides the only customizationne offers
for the TAB key.

TheTabs flag also affects the action of the BACKSPACE and DELETE keys in one special circum-
stance. That is, if the normal action of these keys would remove white space, and that white space could
be represented by a tab, then one tab’s worth of space is removed. In all other cases, the BACKSPACE
and DELETE keys perform their normal function.

If you invokeTabs with no arguments, it will toggle the flag. If you specify 0 or 1, the flag will be
set to false or true, respectively. A lower case ‘t ’ will appear on the status bar if the flag is true.

4.9.15 Turbo
Syntax:Turbo [steps]

Abbreviation:TUR

sets the turbo parameter. Iterated actions and global replaces will update at moststepslines of the screen
(or at most twice the number of visible rows ifstepsis zero); then, update will be delayed to the end of
the action.

Chapter 4: Commands 41

This feature is most useful when massive operations (such asreplacing thousands of occurrences of
a pattern) have to be performed. After having updatedstepslines,ne can proceed at maximum speed,
because no visual update has to be performed.

The value of the turbo parameter has to be adapted to the kind of terminal you are using. Very high
values can be good on high-speed terminals, since the time required for the visual updates is very small,
and it is always safer to look at what the editor is really doing. On slow terminals, however, small values
ensure that operations such as paragraph formatting will not take too long.

You have to be careful about setting the turbo parameter too low. ne keeps track internally of the part
of the screen that needs refresh in a very rough way. This means that a value of less than, say, 8 will
force it to do a lot of unnecessary refresh.

The default value of this parameter is zero, which means twice the number of lines of the screen; for
several reasons this does seem to be a good value.

4.9.16 VerboseMacros
Syntax:VerboseMacros [0|1]

Abbreviation:VM

sets the verbose macros flag. When this flag is true, all macrosgenerated by recording or by automatic
preferences saving will contain full names, instead of short names. This is highly desirable if you are
going to edit the macro manually, but it can slow down commandparsing.

If you invokeVerboseMacros with no arguments, it will toggle the flag. If you specify 0 or 1, the
flag will be set to false or true, respectively. A lower case ‘v ’ will appear on the status bar if the flag is
true.

The only reason to use this flag is when recording a macro that will be played a great number of
times. Automatic preferences files are too short to be an issue with respect to execution timing.

The VerboseMacros setting is saved in your ‘˜/.ne/.default#ap ’ file when you use the
SaveDefPrefs command or the ‘Save Def Prefs ’ menu. It is not saved by theSaveAutoPrefs

command.

4.9.17 PreserveCR
Syntax:PreserveCR [0|1]

Abbreviation:PCR

sets the preserve carriage returns flag. When a file is loaded into a buffer for which this flag is false, both
CR (carriage return) and NL (new line) characters are treatedas line terminators. If the flag is true, CR
characters do not act as line terminators but are instead preserved in the buffer. This flag has no effect
except when loading a file into a buffer.

If you invokePreserveCR with no arguments, it will toggle the flag. If you specify 0 or 1, the flag
will be set to false or true, respectively. An upper case ‘P’ will appear on the status bar if the flag is true.

4.9.18 CRLF
Syntax:CRLF [0|1]

Abbreviation:CRLF

sets the CR/LF flag. When a file is saved from a buffer for which this flag is true, both a CR (carriage
return) and a NL (new line) character are output as line terminators. This flag has no effect except when
saving a file.

This flag is automatically set if you load a file that has at least one CR/LF sequence into it.

If you invokeCRLFwith no arguments, it will toggle the flag. If you specify 0 or 1, the flag will be
set to false or true, respectively. An upper case ‘C’ will appear on the status bar if the flag is true.

42 ne ’s manual

4.9.19 VisualBell
Syntax:VisualBell [0|1]

Abbreviation:VB

sets the visual bell flag. When this flag is true, the terminal will flash (if possible) instead of beeping.

If you invokeVisualBell with no arguments, it will toggle the flag. If you specify 0 or 1, the flag
will be set to false or true, respectively.

4.9.20 PushPrefs
Syntax:PushPrefs [n]

Abbreviation:PUSHP

pushesn copies of the user preferences onto a stack. If not specified,n defaults to one. Use thePopPrefs

command to pop preferences off the stack and restore the values. See Section 4.9.21 [PopPrefs], page 42.
Note that the preferences stack is global, not buffer-specific, so you couldPushPrefs one buffer’s
preferences, switch buffers, thenPopPrefs those preferences, thereby altering the preferences for the
second buffer. The maximum preferences stack depth is 32.

PushPrefs andPopPrefs are useful in macros that require certain preferences to work properly.
A macro canPushPrefs , change any preferences necessary, do its work, thenPopPrefs to restore the
users previous preferences settings.

PushPrefs saves the following values on the preferences stack:

AutoIndent DoUndo PreserveCR Tabs

AutoPrefs FreeForm ReadOnly TabSize

Binary HexCode RightMargin UTF8Auto

CaseSearch Insert SearchBack VisualBell

ClipNumber NoFileReq StatusBar WordWrap

4.9.21 PopPrefs
Syntax:PopPrefs [n]

Abbreviation:POPP

popsn sets of preferences from the preferences stack (where they were placed previously byPushPrefs)
and applies those preferences to the current buffer. See Section 4.9.20 [PushPrefs], page 42. If not
specified,n defaults to one. Note that the preferences stack is global, not buffer specific. Therefore you
could PushPrefs one buffer’s preferences, switch buffers, thenPopPrefs those settings altering the
preferences for the second buffer. The maximum preferencesstack depth is 32.

PushPrefs andPopPrefs are useful in macros that require certain preferences to work properly.
A macro canPushPrefs , change any preferences necessary, do its work, thenPopPrefs to restore the
users previous preferences settings.

PopPrefs restores the following values from the preferences stack:

AutoIndent DoUndo PreserveCR Tabs

AutoPrefs FreeForm ReadOnly TabSize

Binary HexCode RightMargin UTF8Auto

CaseSearch Insert SearchBack VisualBell

ClipNumber NoFileReq StatusBar WordWrap

4.9.22 LoadPrefs
Syntax:LoadPrefs [filename]

Abbreviation:LP

loads the given preference file, and sets the current preferences accordingly.

If the optionalfilenameargument is not specified, the file requester is opened, and you are prompted
to select a file. (You can inhibit the file requester opening byusing theNoFileReq command; see

Chapter 4: Commands 43

Section 4.9.7 [NoFileReq], page 39.) If you escape from the file requester, you can input the file name
on the command line.

Note that a preferences file is just a macro containing only option modifiers. You can manually edit
a preferences file for special purposes, such as filtering outspecific settings. See Chapter 6 [Hints and
Tricks], page 55.

4.9.23 SavePrefs
Syntax:SavePrefs [filename]

Abbreviation:SP

saves the current preferences on the given file.

If the optionalfilenameargument is not specified, the file requester is opened, and you are prompted
to select a file. (You can inhibit the file requester opening byusing theNoFileReq command; see
Section 4.9.7 [NoFileReq], page 39.) If you escape from the file requester, you can input the file name
on the command line.

4.9.24 LoadAutoPrefs
Syntax:LoadAutoPrefs

Abbreviation:LAP

loads the preferences file in ‘˜/.ne ’ associated with the current document’s file name extension. If the
current file name has no extension, the default preferences are loaded. See Section 4.9.2 [AutoPrefs],
page 38.

4.9.25 SaveAutoPrefs
Syntax:SaveAutoPrefs

Abbreviation:SAP

saves the current preferences on the file in ‘˜/.ne ’ associated with the current document’s file name
extension. If the current file name has no extension, an errormessage is issued. See Section 4.9.2
[AutoPrefs], page 38.

4.9.26 SaveDefPrefs
Syntax:SaveDefPrefs

Abbreviation:SDP

saves the current preferences on the ‘˜/.ne/.default#ap ’ file. This file is always loaded byne at
startup.

4.9.27 Modified
Syntax:Modified [0|1]

Abbreviation:MOD

sets the modified flag. This flag is set automatically whenevera buffer is modified, and is used to
determine which buffers need to be saved whenne exits. Normally you would not alter this flag, but
when a buffer is inadvertently modified and you don’t want thechanges saved,Modified provides a
way to makene consider the buffer unchanged.

If you invokeModified with no arguments, it will toggle the flag. If you specify 0 or 1, the flag will
be set to false or true, respectively. An asterisk (‘* ’) will appear on the status bar if the flag is true.

4.9.28 Syntax
Syntax:Syntax [name| *]

Abbreviation:SY

loads the syntax with the given name, and colors the current buffer accordingly.

44 ne ’s manual

If the optionalnameargument is not specified, you are prompted for one. The current one, if set, is
suggested as the default. The specialname* turns off syntax highlighting for the current document. Oth-
erwise,namemust match a syntax definition either in your ‘˜/.ne/syntax ’ directory or in a directory
named ‘syntax ’ inside ne ’s global directory. Additionally,ne has a table mapping common suffixes to
syntax names. If there is no syntax with a given name,ne will try to remap the name using the following
table (the string before the colon is the name of the syntax file):

ada: adb, ads

asm: s

c: c++, cc, cpp, h, h++ hpp, l, lex, y, yacc

cobol: cbl, cob

csh: tcsh

diff: patch

fortran: f, for

html: htm

java: js

lisp: el, lsp

mason: mas

ocaml: ml, mli

pascal: p, pas

perl: pl, pm

ps: eps

python: py, sage

rexx: rex

ruby: rb

sh: bash, bash_login, bash_logout, bash_profile, bashrc, ksh,

profile, rc

skill: il

tex: latex, dtx, sty

troff: 1

verilog: v, vh, vhd

xml: xsd

4.9.29 UTF8
Syntax:UTF8 [0|1]

Abbreviation:U8

sets the UTF-8 flag. When this flag is true,ne considers the current buffer as UTF-8 coded. Note that
this flag is set automatically upon file loading (if possible)if you required automatic detection. See
Section 4.9.30 [UTF8Auto], page 44.

If you invoke UTF8 with no arguments, it will toggle the flag. If you specify 0 or 1, the flag will
be set to false or true, respectively. When you try to set thisflag, the buffer will be checked for UTF-8
compliance, and you will get an error message in case of failure. When you try to reset it, the buffer
is set to ASCII or 8-bit, depending on its content. A ‘U’ will appear on the status bar if the flag is true.
Alternatively, an ‘A’ or an ‘8’ will be displayed to denote whether the buffer is composed exclusively
by US-ASCII characters, or also by other 8-bit characters (whose encoding is likely to be part of the
ISO-8859 family). Note that each time this command modifies the buffer encoding, it also resets the
undo buffer.

4.9.30 UTF8Auto
Syntax:UTF8Auto [0|1]

Abbreviation:U8A

Chapter 4: Commands 45

sets the UTF-8 automatic-detection flag. When this flag is true, ne will try to guess whether a file just
loaded is UTF-8 encoded. Moreover, when a non US-ASCII character is inserted in a pure US-ASCII
buffer, ne will automatically switch to UTF-8. See Section 4.9.29 [UTF8], page 44. The flag is true by
default if ne detects UTF-8 I/O at startup. See Section 4.9.31 [UTF8IO], page 45.

If you invokeUTF8Auto with no arguments, it will toggle the flag. If you specify 0 or 1, the flag will
be set to false or true, respectively.

4.9.31 UTF8IO
Syntax:UTF8IO [0|1]

Abbreviation:U8IO

sets the UTF-8 input/output flag. This flag is set automatically depending on your locale setting, and
is used to determine whether communication with the user (keyboard and terminal) should be UTF-8
encoded. Normally you would not alter this flag, but sometimes ne may make the wrong guess (e.g.,
when you are remotely connected).

If you invokeUTF8IO with no arguments, it will toggle the flag. If you specify 0 or 1, the flag will be
set to false or true, respectively. An ‘@’ will appear on the status bar if the flag is true.

4.10 Navigation Commands
These commands allow you to move through a document. Besides the standard commands that allow
you to move by lines, pages,et cetera, ne has bookmarks that let you mark a position in a file so to move
to the same position later.

4.10.1 MoveLeft
Syntax:MoveLeft [n]

Abbreviation:ML

moves the cursor to the left by one charactern times. If the optionaln argument is not specified, it is
assumed to be one.

4.10.2 MoveRight
Syntax:MoveRight [n]

Abbreviation:MR

moves the cursor to the right by one charactern times. If the optionaln argument is not specified, it is
assumed to be one.

4.10.3 LineUp
Syntax:LineUp [n]

Abbreviation:LU

moves the cursor up by one linen times. If the optionaln argument is not specified, it is assumed to be
one.

4.10.4 LineDown
Syntax:LineDown [n]

Abbreviation:LD

moves the cursor down by one linen times. If the optionaln argument is not specified, it is assumed to
be one.

4.10.5 GotoLine
Syntax:GotoLine [line]

Abbreviation:GL

46 ne ’s manual

moves the cursor to thelineth line of the file. Ifline is zero or greater than the number of lines in the file,
the cursor is moved to the last line.

If the optional argumentline is not specified, you can enter it on the input line; the default input
response is the current line number.

4.10.6 GotoColumn
Syntax:GotoColumn [column]

Abbreviation:GC

moves the cursor to thecolumnth column of the file.

If the optional argumentline is not specified, you can enter it on the input line; the default input
response is the current column number.

4.10.7 GotoMark
Syntax:GotoMark

Abbreviation:GM

moves the cursor to the current mark, if it exists. See Section 4.4.1 [Mark], page 28.

GotoMark is mainly useful if you forgot where you started marking. If you want to record a position
in a file and jump to it later, you may want to use a bookmark. SeeSection 4.10.26 [SetBookmark],
page 48.

4.10.8 PrevPage
Syntax:PrevPage [n]

Abbreviation:PP

moves the cursorn pages backward, if the cursor is on the first line of the screen; otherwise moves the
cursor to the first line of the screen, and moves byn-1 pages. If the optionaln argument is not specified,
it is assumed to be one.

4.10.9 NextPage
Syntax:NextPage [n]

Abbreviation:NP

moves the cursorn pages forward, if the cursor is on the last line of the screen;otherwise moves the
cursor to the last line of the screen, and moves byn-1 pages. If the optionaln argument is not specified,
it is assumed to be one.

4.10.10 PageUp
Syntax:PageUp [n]

Abbreviation:PUP

pages the screen backward byn screens. Ifn is not specified, it is assumed to be one.

4.10.11 PageDown
Syntax:PageDown [n]

Abbreviation:PDN

pages the screen forward byn screens. Ifn is not specified, it is assumed to be one.

4.10.12 PrevWord
Syntax:PrevWord [n]

Abbreviation:PW

moves the cursor to the first character of the previous wordn times. If the optionaln argument is not
specified, it is assumed to be one (in which case, if the cursoris in the middle of a word the effect is just
to move it to the start of that word).

Chapter 4: Commands 47

4.10.13 NextWord
Syntax:NextWord [n]

Abbreviation:NW

moves the cursor to the next wordn times. If the optionaln argument is not specified, it is assumed to
be one.

4.10.14 MoveEOL
Syntax:MoveEOL

Abbreviation:EOL

moves the cursor to the end of the current line (EOL= end of line).

4.10.15 MoveSOL
Syntax:MoveSOL

Abbreviation:SOL

moves the cursor to the start of the current line (SOL= start of line).

4.10.16 MoveTOS
Syntax:MoveTOS

Abbreviation:TOS

moves the cursor to the top line of the screen (TOS= top of screen).

4.10.17 MoveBOS
Syntax:MoveBOS

Abbreviation:BOS

moves the cursor to the lowest line currently visible (BOS= bottom of screen).

4.10.18 MoveEOF
Syntax:MoveEOF

Abbreviation:EOF

moves the cursor to the end of the document (EOF= end of file).

4.10.19 MoveSOF
Syntax:MoveSOF

Abbreviation:SOF

moves the cursor to the start of the document (SOF= start of file).

4.10.20 MoveEOW
Syntax:MoveEOW

Abbreviation:EOW

moves the cursor one character past the end of the current word.
MoveEOWis extremely useful in macros, because it allows you to copy precisely the word the cursor

is on. See Chapter 6 [Hints and Tricks], page 55.

4.10.21 MoveIncUp
Syntax:MoveIncUp

Abbreviation:MIU

moves the cursor incrementally towards the beginning of thedocument. More precisely, if the cursor is
not on the start of the line it lies on, then it is moved to the start of that line. Otherwise, if it is on the first
line of the screen, then it is moved to the start of the document; otherwise, it is moved to the first line of
the screen.

48 ne ’s manual

4.10.22 MoveIncDown
Syntax:MoveIncDown

Abbreviation:MID

moves the cursor incrementally towards the end of the document. More precisely, if the cursor is not on
the end of the line it lies on, then it is moved to the end of thatline. Otherwise, if it is on the last line
of the screen, then it is moved to the end of the document; otherwise, it is moved to the last line of the
screen.

4.10.23 AdjustView
Syntax:AdjustView [T|M|B|L|C|R] [n]

Abbreviation:AV

shifts the view (text visible in the terminal window) horizontally or vertically without changing the
cursor’s position in the document. View adjustments are constrained by the currentTAB size and the
length and width of the current document. If called with no arguments ‘T’ is assumed.

‘T’, ‘ M’, and ‘B’ cause vertical shifts so that the current line becomes the top, middle, or bottom-most
visible line respectively.

‘L’, ‘ C’, and ‘R’ cause horizontal shifts, making the current column the left-most, center, or right-most
visible positions.

A optional numbern immediately after ‘T’, ‘ B’, ‘ L’, or ‘ R’ indicate the number or rows or columns
to shift the view toward the top, bottom, left, or right of thewindow.

Horizontal and vertical adjustment specifications may be combined, so that for example
‘AdjustView TL ’ shifts the view so that the current position becomes the topleft-most character on
screen (within the limits of the currentTAB size). Likewise, ‘AdjustView B3R5 ’ shifts the view three
lines toward the bottom and five columns (exceptingTAB size) toward the right.

4.10.24 ToggleSEOF
Syntax:ToggleSEOF

Abbreviation:TSEOF

moves the cursor to the start of document, if it is not alreadythere; otherwise, moves it to the end of the
document.

This kind of toggling command is very useful in order to gain some keystrokes on systems with very
few keys. See also Section 4.10.25 [ToggleSEOL], page 48, Section 4.10.19 [MoveSOF], page 47, and
Section 4.10.18 [MoveEOF], page 47.

4.10.25 ToggleSEOL
Syntax:ToggleSEOL

Abbreviation:TSEOL

moves the cursor to the start of the current line, if it is not already there; otherwise, moves it to the end
of the current line.

This kind of toggling command is very useful in order to gain some keystrokes on systems with very
few keys. See also Section 4.10.24 [ToggleSEOF], page 48, Section 4.10.15 [MoveSOL], page 47, and
Section 4.10.14 [MoveEOL], page 47.

4.10.26 SetBookmark
Syntax:SetBookmark [n| -]

Abbreviation:SBM

sets thenth bookmark to the current cursor position. If the optionaln argument is not specified, it is
assumed to be zero. You can also unset the ‘- ’ automatic bookmark, but it will be reset automatically to

Chapter 4: Commands 49

the current position whenever aGotoBookmark command is issued. Each document’s valid bookmark
designations are 0 to 9, and the ‘- ’ automatic bookmark.

4.10.27 GotoBookmark
Syntax:GotoBookmark [n| -]

Abbreviation:GBM

moves the cursor to thenth or - automatic bookmark, assuming that bookmark has been set; see Sec-
tion 4.10.26 [SetBookmark], page 48. If the optionaln argument is not specified, it is assumed to be
zero. When successful, the ‘- ’ automatic bookmark is set to the position in the document from which the
command was issued, so thatGotoBookmark - returns you to the location from which you last issued a
GotoBookmark command. Subsequent repeatedGotoBookmark - commands toggle you between the
two locations. Each document’s valid bookmark designations are 0 to 9, and the ‘- ’ automatic bookmark.

4.10.28 UnsetBookmark
Syntax:UnsetBookmark [n| -]

Abbreviation:UBM

unsets thenth bookmark, making it as if it had never been set; see Section4.10.26 [SetBookmark],
page 48. If the optionaln argument is not specified, it is assumed to be zero. You can also unset the ‘- ’
automatic bookmark, but it will be reset automatically to the current position whenever aGotoBookmark

command is issued. Each document’s valid bookmark designations are 0 to 9, and the ‘- ’ automatic
bookmark.

4.11 Editing Commands
These commands allow modifying a document directly.

4.11.1 InsertChar
Syntax:InsertChar [code]

Abbreviation:IC

inserts a character whoseASCII code iscodeat the current cursor position.codecan be either decimal,
hexadecimal if preceded by ‘0x ’, or octal if preceded by ‘0’. In any case,codemust be different from 0.
All the currently active preferences options (insert, wordwrapping, auto indent,et cetera) are applied.

If the optional argumentcodeis not specified, you can enter it on the input line, the default being the
last inserted character.

Note that inserting a line feed (10) is completely differentfrom inserting a line withInsertLine .
InsertChar 10 puts the control charCONTROL-J in the text at the current cursor position. See Sec-
tion 4.11.8 [InsertLine], page 50.

Note also thatSaveMacro convertsInsertChar commands into a possibly smaller number of
InsertString commands. This makes macros easier to read and edit. See Section 4.6.5 [SaveMacro],
page 34.

4.11.2 InsertString
Syntax:InsertString [text]

Abbreviation:IS

insertstext at the current cursor position. If the optional argumenttext is omitted, you will be prompted
for it on the command line. All the currently active preferences options (insert, word wrapping, auto
indent,et cetera) are applied.

Note that SaveMacro converts InsertChar commands into a possibly smaller number of
InsertString commands. This makes macros easier to read and edit. See Section 4.6.5 [SaveMacro],
page 34.

50 ne ’s manual

4.11.3 InsertTab
Syntax:InsertTab [n]

Abbreviation:IT

inserts eithern literal TAB characters or one or more spaces sufficient to advance the current cursor
positionn tab stops depending on theTabs flag. See Section 4.9.14 [Tabs], page 40, Section 4.9.13
[TabSize], page 40.

4.11.4 DeleteChar
Syntax:DeleteChar [n]

Abbreviation:DC

deletesn characters from the text. If the optionaln argument is not specified, it is assumed to be one.
Deleting a character when the cursor is just after the last char on a line will join a line with the following
one; in other words, the carriage return between the two lines will be deleted. Note that if the cursor is
past the end of the current line, no action will be performed.

4.11.5 DeletePrevWord
Syntax:DeletePrevWord [n]

Abbreviation:DPW

deletes text from the current position to the first characterof the previous wordn times. If the optionaln
argument is not specified, it is assumed to be one (in which case, if the cursor is in the middle of a word
the effect is just to delete to the start of that word).

4.11.6 DeleteNextWord
Syntax:DeleteNextWord [n]

Abbreviation:DNW

deletes text from the current position to the next wordn times. If the optionaln argument is not specified,
it is assumed to be one.

4.11.7 Backspace
Syntax:Backspace [n]

Abbreviation:BS

acts likeDeleteChar , but moves the cursor to the left before deleting each character.

4.11.8 InsertLine
Syntax:InsertLine [n]

Abbreviation:IL

insertsn lines at the current cursor position, breaking the current line. If the optionaln argument is not
specified, it is assumed to be one.

4.11.9 DeleteLine
Syntax:DeleteLine [n]

Abbreviation:DL

deletesn lines starting from the current cursor position, putting the last one in the temporary buffer, from
which it can be undeleted. See Section 4.7.3 [UndelLine], page 35. If the optionaln argument is not
specified, it is assumed to be one. Note that this action is in no way inverse with respect toInsertLine .

4.11.10 DeleteEOL
Syntax:DeleteEOL

Abbreviation:DE

Chapter 4: Commands 51

deletes all characters from the current cursor position to the end of the line.

DeleteEOL could be easily implemented with a macro, but it is such a common, basic editing feature
that it seemed worth a separate implementation.

4.12 Support Commands
These commands perform miscellaneous useful actions. In particular, they provide access to the shell
and a way to assign the functionality of ESCAPE to another key.

4.12.1 About
Syntax:About

Abbreviation:About

displays a simple information line aboutne on the status bar.

4.12.2 Alert
Syntax:Alert

Abbreviation:AL

beeps or flashes, depending on the value of the visual bell flag.

4.12.3 Beep
Syntax:Beep

Abbreviation:BE

beeps. If your terminal cannot beep, it flashes. If it cannot flash, nothing happens (but you have a very
bad terminal).

4.12.4 Exec
Syntax:Exec

Abbreviation:EX

prompts the user on the input line, asking for a command, and executes it. It is never registered while
recording a macro (though the command you type is).

Exec is mainly useful for key bindings, menu configurations, and in manually programmed macros.

Note that if the command you specify does not appear inne ’s internal tables, it is considered to be a
macro name. See Section 4.6.3 [Macro], page 33.

4.12.5 Flash
Syntax:Flash

Abbreviation:FL

acts asBeep, but interchanging the words “beep” and “flash”. Same comments apply. See Section 4.12.3
[Beep], page 51.

4.12.6 Help
Syntax:Help [name]

Abbreviation:H

displays some help about the commandname(both the short and the long versions of the command
names are accepted). If no argument is given, a list of all existing commands in long form is displayed,
allowing you to choose one. You can browse the help text with the standard navigation keys. If you press
RETURN, the command list will be displayed again. If you press F1 or ESCAPE, you will return to
normal editing.

Invocations of theHelp command are never registered while recording macros so thatyou can safely
access the help system while recording. See Section 4.6.1 [Record], page 33.

52 ne ’s manual

4.12.7 NOP
Syntax:NOP

Abbreviation:NOP

does nothing. Mainly useful for inhibiting standard key bindings.

4.12.8 Refresh
Syntax:Refresh

Abbreviation:REF

refreshes the display.Refresh is very important, and should preferably be bound to theCONTROL-L

sequence, for historical reasons. It can always happen thata noisy phone line or a quirk in the terminal
corrupts the display. This command restores it from scratch.

Refresh has the side effect of checking to see if your window size has changed, and will modify the
display to take that into account.

4.12.9 Suspend
Syntax:Suspend

Abbreviation:SU

suspendsne and returns you to a shell prompt; usually, the shell commandfg is used to resumene.

4.12.10 System
Syntax:System [command]

Abbreviation:SYS

asks the shell to executecommand. The terminal is temporarily reset to the state it was in before ne ’s
activation, andcommandis started. When the execution is finished, control returns to ne.

If the optional argumentcommandis not specified, you can enter it on the input line.

4.12.11 Escape
Syntax:Escape

Abbreviation:ESC

toggles the menus on and off, or escapes from the input line. This command is mainly useful for re-
programming the menu activator, and it is never registered while recording a macro. See Section 4.6.1
[Record], page 33.

4.12.12 KeyCode
Syntax:KeyCode

Abbreviation:KC

prompts you to press a key, and reports on the status line the key codene associates with that key. This
can be useful while configuring your ‘˜/.ne/.keys ’ file. It also reports the input class for that key.
Input class codes are: ALPHA, COMMAND, RETURN, TAB, IGNORE, and INVALID.

Chapter 5: Configuration 53

5 Configuration

In this chapter we shall see how the menus and the key bindingsof ne can be completely configured.
Note that the configuration is parsed at startup time, and cannot be changed during the execution of the
program. This is a chosen limitation.

5.1 Key Bindings
ne allows you to associate any keystroke with any command. To accomplish this task, you have to create
a (possibly UTf-8) file named ‘.keys ’ in your home directory, or in ‘̃/.ne ’. You can change the default
name (possibly specifying a complete path) using the--keys argument (see Section 3.1 [Arguments],
page 11).

The format of the file is very simple: each line starting with the ‘KEY’ sequence of capital characters
is considered the description of a key binding. All other lines are considered comments. The format of a
key binding description is

KEY hexcode command

Thehexcodevalue is theASCII code of the keystroke. (For special keys such as INSERT or function
keys, you should take a look at the file ‘default.keys ’ that comes withne ’s distribution: it contains
a complete, commented definition ofne ’s standard bindings that you can modify with a trial-and-error
approach.) The easiest way to see the codene uses for a given key is by using the Section 4.12.12
[KeyCode], page 52 command. It prompts you to press a key, thenreports the code for that key on the
status bar.

You can write just the hexadecimal digits, nothing else is necessary (but a prefixing ‘0x ’ is tolerated).
For instance,

KEY 1 MoveSOL

binds toCONTROL-A the action of moving to the start of a line, while

KEY 101 LineUp

binds to the “cursor-up” key the action of moving the cursor one line up.

commandcan be anyne command, includingEscape (which allows reconfiguring the menu activa-
tor) andMacro , which allows binding complex sequences of actions to a single keystroke. The binding of
a macro is very fast because on the first call the macro is cached in memory. See Section 4.6.3 [Macro],
page 33.

Note that you cannotever redefine RETURN or ESCAPE. This is a basic issue—however brain
damaged is the current configuration, you will always be ableto exploit fully the menus and the command
line.

Besides the “standard” combinations (e.g.,CONTROL-letter), it possible to program combinations
based on the META key (a.k.a. ALT). The situation in this case is a bit more involved, because depending
on the terminal emulator you are using, the effect of the META key can be widely different. For instance,
xterm raises the eighth bit of a character, so, for instance,

KEY 81 MoveSOF

binds CONTROL-META-a to the action of moving to the start of the document. However,gnome-

terminal will emit the character of ASCII code 1 prefixed with ESC instead. To handle this case,
ne provides codes from 180 on forsimulated META sequences: for instance,

KEY 181 MoveSOF

binds the abovementioned sequence to the same action as before. In general, the code 180+x corresponds
to the sequence ESC followed by the ASCII character of codex. Note that some of these sequences may
be disabled, if they conflict with existing sequences of yourterminal (for instance, ESC followed by ‘O’
is always disabled because it prefixes several built-in keyboard sequences).

54 ne ’s manual

As a final note, we remark that typingMETA-a on gnome-terminal will produce an ESC followed
by ‘a’. Since it is obviously easier to press just META rather than META and CONTROL at the same
time, it is a good idea to associate the same sequence also to this combination, using

KEY 1E1 MoveSOF

Moreover, this setting provides the user with a second choice: one can press ESCAPE followed by a
letter instead of using modifiers.

This is the approach used by default inne: this way, CONTROL with META plus a letter should
always work, and META should work sometimes (of course, if you’re sure to use always the same kind
of emulator you can bind more features). Again, the best place to look at it’s ‘default.keys ’.

The key binding file is parsed at startup. If something does not work, ne exits displaying an error
message. If you wantne to skip parsing the key binding file (for instance, to correctthe broken file), just
give ne the--no-config argument. See Section 3.1 [Arguments], page 11.

5.2 Changing Menus
ne allows you to change the contents of its menus. To accomplishthis task, you have to create a file
named ‘.menus ’ in your home directory, or in ‘̃/.ne ’. You can change the default name (possibly
specifying a complete path) using the--menus argument (see Section 3.1 [Arguments], page 11).

Each line of a menu configuration file not starting with the ‘MENU’ or ‘ ITEM’ keywords is considered
a comment. You should describe the menus as in the following example:

MENU "File"

ITEM "Open... ˆO" Open

ITEM "Close " Close

ITEM "DoIt " Macro DoIt

In other words: a line of this form

MENU "title"

will start the definition of a new menu, having the given title. Each line of the form

ITEM " text" command

will then define a menu item, and associate the given command to it.

Any number of menus can be accommodated, but you should consider that many terminals are 80
columns wide. There is also a minor restriction on the items—their width has to be constant throughout
each menu (but different menus can have different widths). Note that the text of an item, as the name of
a menu, is between quotes. Whatever follows the last quote isconsidered the command associated to the
menu.

Warning: the description of key bindings in menus (‘ˆO ’ in the previous example) is very important for
the beginner; there is no relation insidene about what you say in the menu and how you configure the
key bindings (see Section 5.1 [Key Bindings], page 53). Please do not say things in the menus that are
not true in the key binding file.

The menu configuration file is parsed at startup. If somethingdoes not work,ne exits displaying an
error message. If you wantne to skip the menu configuration phase (for instance, to correct the broken
file), just givene the--no-config argument. See Section 3.1 [Arguments], page 11.

Chapter 6: Hints and Tricks 55

6 Hints and Tricks

Use F1 or ESCAPE-ESCAPE, not ESCAPE.
Due to the limitations of the techniques used when communicating with a terminal, it is
not possible to “decide” that the user pressed the ESCAPE key for about a second after
the actual key press (see Section 4.9.12 [EscapeTime], page40). This means that you will
experience annoying delays when using menus. If you have no F1 key, use ESCAPE-
ESCAPE, or redefine a keystroke assigning the commandEscape , and you will be able
to use that keystroke instead of ESCAPE. Unfortunately, someGUI-based terminals (most
notably,gnome-terminal) use F1 for their own purposes; in that case, you can assign the
Escape command to another key (see Chapter 5 [Configuration], page 53).

Check for the presence of a META key.
If your system has a standard META or ALT key, there is a good chance that you have
several other shortcuts. If the built-in META bindings do notwork, you must discover
which is the effect of the META in your terminal emulator. Indeed, it is possible in theory
to configure about 150 shortcuts. See Chapter 5 [Configuration], page 53. In any case,
prefixing a key with ESCAPE has the same effect as holding down META, so with the
standard key bindings you can, for instance, advance by wordwith ESCAPE followed by
F.

Mac users should turn on “Delete sends CTRL-H” in theTerminal settings.
If you are a Mac user, you need to check the “Delete sends CTRL-H” option in the
‘Advanced ’ tab of theTerminal application settings.

ne does tilda expansion.
When you have to specify a file name, you can always start with ‘˜/ ’ in order to specify
your home directory, or ‘˜ user/ ’ to specify the home directory of another user.

It is easy to correct bad colors.
Sometimes, due to different opinions about the best defaultforeground and background
colors, some of the color choices in a syntax file might be unreadable (for instance, ‘dim

white ’ on a terminal with a white background). Just copy the guiltysyntax specification
file in the ‘̃ /.ne/syntax ’ directory, and change the color names at the start of the file.

ne does interactive filename completion.
When you have to specify a file name as last element of a long input, you can invoke the
completer using TAB. If you hit it twice in a row, you will enterthe file requester, where
you can navigate and escape back to the command line, either with F1, which will let you
edit again your previous input, or with TAB, which will copy your current selection over
your previous file name. In other words, you can freely alternate completion, editing and
browsing.

Disable the status line for slow connections.
ne tries to emit as few characters as possible when updating thescreen. However, for each
key you type it is likely that the status bar has to be updated.If your connection is very
slow, you can disable the status bar to get a quicker response(see Section 4.9.9 [StatusBar],
page 39).

The ESCAPE delay when activating menus can be avoided.
If you press after ESCAPE any key that does not produce the second character of an es-
cape sequence,ne will immediately recognize the ESCAPE key code as such. Sincenon-
alphabetical keys have no effect while browsing through themenus, if you’re forced to
use ESCAPE as menu activator you can press, for instance, ‘, ’ just after it to speed up
the menu activation (note that ‘: ’ would not work, because it would activate the command
line). Alternatively, you can just type ESCAPE twice in a row.

56 ne ’s manual

Use turbo mode for lengthy operations.
Turbo mode (see Section 4.9.15 [Turbo], page 40) allows performing very complex opera-
tions without updating the screen until the operations are complete. This can be a major plus
if you are editing very long files, or if your terminal is slow.If the default value (0, which
means twice the number of visible rows) does not give you the best results, experiment
other values.

Regular expressions are powerful, and slow.
Regular expressions must be studied very carefully. If you spend a lot of time doing editing,
it is definitely reasonable to study even their most esotericfeatures. Very complex editing
actions can be performed by a single find/replace using the\ n convention. But remember
always that regular expressions are much slower than a normal search: in particular, if you
use them on a UTF-8 text,ne has to transform them into an equivalent (but more complex)
expression that cannot match partially a UTF-8 sequence, and this expansion makes the
search even slower.

Use the correct movement commands in a macro.
Many boring, repetitive editing actions can be performed in abreeze by recording them the
first time. Remember, however, that while recording a complexmacro you should always
use a cursor movement that will apply in a different context.For instance, if you are copying
a word, you cannot move with cursor keys, because that word atanother application of the
macro could be of a different length. Rather, use the next/previous word keys and the
MoveEOWcommand, which guarantee a correct behaviour in all situations.

Some preferences can be preserved even with automatic preferences.
When you save an autoprefs file, the file simply contains a macro that, when executed,
produces the current configuration. However, you could want, for instance, to never change
the insert/overwrite state. In this case, just edit the autoprefs files withne and delete the
line containing the command setting the insert flag. When theautoprefs are loaded later,
the insert flag will be left untouched. This trick is particularly useful with theStatusBar

andFastGUI commands.

If some keystrokes do not work, check for system-specific features.
Sometimes it can happen that a keystroke does not work—for instance,CONTROL-O does
not open a file. This usually is due to the kernel tracking thatkey for its purposes. For in-
stance, along atelnet connection with xon/xoff flow control,CONTROL-S andCONTROL-
Q would block and release the output instead of saving and quitting.

In these cases, if you do not need the system feature you should check how to disable it: for
instance, someBSD-like systems feature a delayed suspend signal that is not inthe POSIX

standard, and thus cannot be disabled byne. On HP-UX, the commandstty dsusp ˆ-

would disable the signal, and would let the control sequencepreviously assigned to it to run
up tone.

Chapter 7: Motivations and Design 57

7 Motivations and Design

In this chapter I will try to outline the rationale behindne ’s design choices. Moreover, some present,
voluntary limitations of the current implementation will be described. The intended audience of such a
description is the programmer wanting to hack upne ’s sources, or the informed user wanting to deepen
his knowledge of the limitations.

The design goal ofne was to write an editor that is easy to use at first sight, powerful, and completely
configurable. Makingne run on any terminal thatvi could handle was also a basic issue, because there
is no use getting accustomed to a new tool if you cannot use it when you really need it. Finally, using
resources sparingly was considered essential.

ne has no concept ofmode. All shortcuts are defined by a single key, possibly with a modifier (such
as CONTROL or META). Modality is in my opinion a Bad Thing unless ithas a very clear visual
feedback. As an example, menus are a form of modality. After entering the menus, the alphabetic keys
and the navigation keys have a different meaning. But the modality is clearly reflected by a change in the
user interface. The same can be said about the input line, because it is always preceded by a (possibly
highlighted) prompt ending with a colon.

ne has no sophisticated visual updating system similar to, forinstance, the one ofcurses . All
updating is done while manipulating the text, and only if theturbo flag is set can some iterated operations
delay the update. (In this case,ne keeps track in a very rough way of the part of the screen that changed.)
Moreover, the output is not preempted by additional input coming in, so that along a slow connection the
output could not keep up with the input. However, along reasonably fast connections, the responsiveness
of the editor is greatly enhanced by the direct update. And since we update the screen in parallel with
the internal representation, we can exploit our knowledge to output a very small number of characters
per modification. As it is typical inne, when such design tradeoffs arise, preference is given to the
solution that is effective on a good part of the existing hardware and will be very effective on most future
hardware.

ne uses a particular scheme for handling text. There is a doublylinked list of line descriptors that
contain pointers to each line of text. The lines themselves are kept in a list of pools, which is expanded
and reduced dynamically. The interesting thing is that for each poolne keeps track just of the first and
of the last character used. A character is free iff it contains a null, so there is no need for a list of free
chunks. The point is that the free characters lying between that first and the last used characters (thelost
characters) can only be allocatedlocally: whenever a line has to grow in length,ne first checks if there
are enough free characters around it. Otherwise, it remaps the line elsewhere. Since editing is essentially
a local activity, the number of such lost characters remainsvery low. And the manipulation of a line is
extremely fast and independent of the size of the file, which can be very huge. A mathematical analysis
of the space/time tradeoff is rather difficult, but empirical evidence suggests that the idea works.

ne takes thePOSIX standard as the basis forUN* X compatibility. The fact that this standard has been
designed by a worldwide recognized and impartial organization such asIEEE makes it in my opinion the
most interesting effort in its league. No attempt is made to support ten thousand different versions and
releases by using conditional compilation. Very few assumptions are made about the behaviour of the
system calls. This has obvious advantages in terms of code testing, maintenance, and reliability. For the
same reasons, the availability of anANSI C (C90) compiler is assumed.

If the system has aterminfo database and the related functions (which are usually contained in
curses library), ne will use them. The need for a terminal capability database isclear, and the choice of
terminfo (with respect totermcap) is compulsory if you want to support a series of features (such as
more than ten function keys) thattermcap lacks. If terminfo is not available,ne can use atermcap

database, or, as a last resort, a built-in set of ANSI controlsequences. Some details about this can be
found in Chapter 10 [Portability Problems], page 63.

ne does not allow redefinition of the ESCAPE, TAB or RETURN keys, norof the interrupt character
CONTROL-\. This decision has been made mainly for two reasons. First ofall, it is necessary to keep

58 ne ’s manual

a user from transformingne ’s bindings to such a point that another unaware user cannot work with it.
These two keys and the alphabetic keys allow activating any command without any further knowledge
of the key bindings, so it seems to me this is a good choice. As asecond point, the ESCAPE key usage
should generally be avoided. The reason is that most escape sequences that are produced by special keys
start with the escape character. When ESCAPE is pressed,ne has to wait for one second (this timing can
be changed with theEscapeTime command), just to be sure that it did not receive the first character of
an escape sequence. This makes the response of the key very slow, unless it is immediately followed by
another key such as ‘: ’, or by ESCAPE, again. See Chapter 6 [Hints and Tricks], page 55.

Note that, as has been stated several times, the custom key bindings also work when doing a long
input, navigating through the menus or browsing the requester. However, this is only partially true. To
keep the code size and complexity down, in these casesne recognizes only direct bindings to commands,
and discards the arguments. Thus, for instance, if a key is bound to the command lineLineUp 2 , it will
act likeLineUp , while a binding toMacro MoveItUp would produce no result. Of course full binding
capability is available while writing text. (This limitation will probably be lifted in a future version:
presently it does not seem to limit seriously the configurability of ne.)

ne has some restrictions in its terminal handling. It does not support highlighting on terminals that
use a magic cookie. Supporting such terminals correctly is aroyal pain, and I did not have any means of
testing the code anyway. Moreover, they are rather obsolete.Another lack of support is for the capability
strings that specify a file to print or a program to launch in order to initialize the terminal.

The macro capabilities ofne are rather limited. For instance, you cannot give an argument to a
macro: macros are simply scripts that can be played back automatically. This makes them very useful
for everyday use in a learn/play context, but rather inflexible for extending the capabilities of the editor.
However, it is not reasonable to incorporate in an editor an interpreter for a custom language. Rather, a
system-wide macro language should control the editorvia interprocess communication. This is the way
of the REXX language, and it is likely that future versions ofne will support optionally macros written
in REXX.

ne has been written with sparing resource use as a basic goal. Every possible effort has been made
to reduce the use ofCPU time and memory, the number of system calls, and the number ofcharacters
output to the terminal. For instance, command parsing is done through hash techniques, and the escape
sequence analysis uses the order structure of strings for minimizing the number of comparisons. The
optimal cursor motion functions were directly copied fromemacs. The update of files using syntax
highlighting is as lazy as possible: modifications cause just the update of the current line, and the rest
of the screen is updated only when you move away. The search algorithm is a simplified version of the
Boyer-Moore algorithm that provides high performance with a minimal setup time. An effort has been
taken to move to the text segment all data that do not change during the program execution. When the
status bar is switched off, additional optimizations reduce the cursor movement to a minimum.

A word should be said about lists. Clearly, handling the text as a single block with an insertion
gap (a laemacs) allows you to gain some memory. However, the management of the text as a linked
list requires much lessCPU time, and the tradeoff seems to be particularly favorable onvirtual memory
systems, where moving the insertion gap can require a lot of accesses to different pages.

In practice,ne occupies less memory than any memory-based editor we are aware of. (Of course,
this does not take into account some sophisticated featuresof ne, such as unlimited undo/redo, which
can cause major memory consumption.)

Chapter 8: The Encoding Mess 59

8 The Encoding Mess

The originalne handled 8-bit text files, and assumed that every byte coming from the keyboard could be
output to the terminal. No other assumption was made—for instance, the up/down casing functions did
not assume a particular encoding for non-US-ASCII characters. This choice had a significant advantage:
ne could handle easily several different encodings, with minor nuisances for the end user.

Since version 1.30,ne supports UTF-8. It can use UTF-8 for its input/output, and itcan also interpret
one or more buffers as containing UTF-8 encoded text, actingaccordingly. Note that the buffer content
is actual UTF-8 text—ne does not use wide characters. As a positive side-effect,ne can support fully
the ISO-10646 standard, but nonetheless non-UTF-8 texts occupy exactly one byte per character.

More precisely,anypiece of text inne is classified as US-ASCII, 8-bit or UTF-8. A US-ASCII text
contains only US-ASCII characters. An 8-bit text sports a one-to-one correspondence between characters
and bytes, whereas an UTF-8 text is interpreted in UTF-8. Of course, this rises a difficult question:when
should a buffer be classified as UTF-8?

Character encodings are a mess. There is nothing we can do to change this fact, as character encodings
aremetadata that modify data semantics. The same file may represent different texts of different lengths
when interpreted with different encodings. Thus, there is no safe way of guessing the encoding of a file.

ne stays on the safe side: it will never try to convert a file from an encoding to another one. It can,
however, interpret data contained in a buffer depending on an encoding: in other words, encodings are
truly treated as metadata. You can switch off UTF-8 at any time, and see the same buffer as a standard
8-bit file.

Moreover,ne uses alazyapproach to the problem: first of all, unless the UTF-8 automatic detection
flag is set (see Section 4.9.30 [UTF8Auto], page 44), no attempt is ever made to consider a file as UTF-
8 encoded. Every file, clip, command line, etc., is firstly scanned for non-US-ASCII characters: if it
is entirely made of US-ASCII characters, it is classified as US-ASCII. An US-ASCII piece of text is
compatible with anything else—it may be pasted in any buffer, or, if it is a buffer, it may accept any form
of text. Buffers classified as US-ASCII are distinguished by an‘A’ on the status bar.

As soon as a user action forces a choice of encoding (e.g., an accented character is typed, or an UTF-
8-encoded clip is pasted),ne fixes the mode to 8-bit or UTF-8 (when there is a choice, this depends
on the value of the Section 4.9.30 [UTF8Auto], page 44 flag). Of course, in some cases this may be
impossible, and in that case an error will be reported.

All this happens behind the scenes, and it is designed so thatin 99% of the cases there is no need to
think of encodings. In any case, shouldne ’s behaviour not match your needs, you can always change at
run time the level of UTF-8 support.

60 ne ’s manual

Chapter 9: History 61

9 History

The main inspiration for this work came from Martin Taillefer’s TurboText for the Amiga, which is the
best editor I ever saw on any computer.

The first versions ofne were created on an Amiga 3000T, using the port of thecurses library by
Simon John Raybould. After switching to the lower-levelterminfo library, the development continued
under UN* X. Finally, I portedterminfo to the Amiga, thus making it possible to develop on that
platform again. Forne 1.0, an effort has been made to provide aterminfo emulation using GNU’s
termcap . The development eventually moved to Linux.

Todd Lewis got involved withne when the University of North Carolina’s Chapel Hill campus mi-
grated its central research computers fromMVS to UNIX in 1995. The readily availableUNIX editors had
serious weaknesses in their user interfaces, especially from the standpoint ofMVS users who were not
too excited about having to move their projects to another platform while learning an entirely new suite
of tools.ne offered an easily understood interface with enough capabilities to keep these newUNIX users
productive. Todd installed and has maintainedNE at UNC since then, making several improvements to
the code to meet his users’ needs. In early 1999 his code base and mine were merged to become version
1.17.

Support for syntax highlighting was added in 2009 with code and techniques heavily borrowed from
the GNU-licensed editorjoe , which was written by Joseph H. Allen. Much of the work to incorpo-
rate this code intone was undertaken by Daniele Filaretti, an undergraduate student working under the
direction of Sebastiano at the Università degli Studi di Milano.

62 ne ’s manual

Chapter 10: Portability Problems 63

10 Portability Problems

This chapter is devoted to the description of the (hopefullyvery few) problems that could arise when
portingne to other flavors ofUN* X.

The fact that onlyPOSIX calls have been used (see Chapter 7 [Motivations and Design], page 57)
should guarantee that onPOSIX-compliant systems a recompilation should suffice. Unfortunately,
terminfo has not been standardized byIEEE, so that different calls could be available. The necessary
calls aresetupterm() , tparm() andtputs() . The otherterminfo functions are never used.

If terminfo is not available, the source files ‘info2cap.c ’ and ‘info2cap.h ’ map terminfo

calls ontermcap calls. The complete GNUtermcap sources are distributed withne, so no library at
all is needed to use them. You just have to compile using one ofthe options explained in the ‘makefile ’
and in the ‘README’. Should you need comprehensive information on GNUtermcap , you can find the
distribution files on anyftp site that distributes the GNU archives. I should note that the GNUtermcap

manual is definitely the best manual ever written about terminal databases.

There are, however, some details that are not specified byPOSIX, or are specified with insufficient pre-
cision. The places of the source where such details come to the light are evidenced by the ‘PORTABILITY

PROBLEM’ string, which is followed by a complete explanation of the problem.

For instance, there is no standard way of printing extendedASCII characters (i.e., characters whose
code is smaller than 32 or greater than 126). On many system, these characters have to be filtered and
replaced with something printable: the default behaviour is to add 64 to all characters under 32 (so that
control characters will translate to the respective letter) and to print them in reverse video; moreover,
all characters between 127 and 160 are visualized as a reversed question mark (this works particularly
well with ISO Latin 1, but Windows users might not like it). This behavior can be easily changed by
modifying theout() function in ‘term.c ’.

Note that it is certainly possible that some system featuresnot standardized byPOSIX interfere with
ne ’s use of the I/O stream. Such problems should be dealt with locally by using the system facilities
rather than by horribly#ifdef ’ing the source code. An example is given in Chapter 6 [Hints and
Tricks], page 55.

64 ne ’s manual

Chapter 11: Acknowledgments 65

11 Acknowledgments

A lot of people contributed to this project. Part of the code comes fromemacs andjoe . Many people, in
particular at the silab (the Milan University Computer Science Department Laboratory), helped in beta
testing the first versions. Daniele Filaretti worked at the integration of syntax-highlighting code from
joe . John Gabriele suggested several new features and relentlessly tested them.

Comments, complaints, desiderata are welcome.

Sebastiano Vigna

Via California 22

I-20144 Milano MI

Italia

vigna@dsi.unimi.it

Todd M. Lewis

CB 1150 G309 ITS Franklin

University of North Carolina

Chapel Hill, NC 27599-1150

USA

utoddl@email.unc.edu

66 ne ’s manual

Command Index 67

Command Index

A
About . 51
AdjustView . 48
Alert . 51
AutoComplete. 32
AutoIndent. 36
AutoPrefs. 38

B
Backspace. 50
Beep. 51
Binary. 38

C
Capitalize. 36
CaseSearch. 32
Center. 35
Clear. 27
ClipNumber. 29
CloseDoc. 27
Copy. 28
CRLF . 41
Cut. 28

D
DeleteChar. 50
DeleteEOL. 50
DeleteLine. 50
DeleteNextWord. 50
DeletePrevWord. 50
DoUndo. 35

E
Erase. 29
Escape. 52
EscapeTime. 40
Exec . 51
Exit . 27

F
FastGUI. 38
Find. 30
FindRegExp. 30
Flags. 37
Flash. 51
FreeForm. 38

G
GotoBookmark. 49
GotoColumn. 46
GotoLine. 45
GotoMark. 46

H
Help. 51
HexCode. 39

I
Insert. 38
InsertChar. 49
InsertLine. 50
InsertString. 49
InsertTab. 50

K
KeyCode. 52

L
LineDown. 45
LineUp . 45
LoadAutoPrefs. 43
LoadPrefs. 42

M
Macro. 33
Mark . 28
MarkVert . 28
MatchBracket. 32
Modified. 43
MoveBOS. 47
MoveEOF. 47
MoveEOL. 47
MoveEOW. 47
MoveIncDown. 48
MoveIncUp. 47
MoveLeft . 45
MoveRight. 45
MoveSOF. 47
MoveSOL. 47
MoveTOS. 47

N
NewDoc. 27
NextDoc. 27
NextPage. 46
NextWord. 47
NoFileReq. 39
NOP . 52

O
Open. 26
OpenClip. 29
OpenMacro. 33
OpenNew. 26

68 ne ’s manual

P
PageDown. 46
PageUp. 46
Paragraph. 35
Paste. 29
PasteVert. 29
Play. 33
PopPrefs. 42
PreserveCR. 41
PrevDoc. 27
PrevPage. 46
PrevWord. 46
PushPrefs. 42

Q
Quit . 27

R
ReadOnly. 40
Record. 33
Redo. 34
Refresh. 52
RepeatLast. 31
Replace. 30
ReplaceAll. 31
ReplaceOnce. 31
RequestOrder. 39
RightMargin. 36

S
Save. 26
SaveAs. 26
SaveAutoPrefs. 43
SaveClip. 29
SaveDefPrefs. 43

SaveMacro. 34
SavePrefs. 43
SearchBack. 32
SelectDoc. 27
SetBookmark. 48
StatusBar. 39
Suspend. 52
Syntax. 43
System. 52

T
Tabs. 40
TabSize. 40
Through. 30
ToggleSEOF. 48
ToggleSEOL. 48
ToLower. 36
ToUpper. 36
Turbo. 40

U
UndelLine. 35
Undo. 34
UnloadMacros. 34
UnsetBookmark. 49
UTF8. 44
UTF8Auto . 44
UTF8IO . 45

V
VerboseMacros. 41
VisualBell. 42

W
WordWrap. 36

Concept Index 69

Concept Index

A
Amiga. 61
Arguments. 11
Automatic Completion. 8
Automatic preferences. 6, 23

B
Binary files. 8, 38
Block operations. 5
Bookmarks. 8
Buffer . 3

C
Caching a macro. 7
Changing colors. 55
Clip usage. 5
Closing a document. 4
Command arguments. 25
Command line. 3, 14
Commands. 25
Comments in a macro. 7
Configuring the keyboard. 53
Configuring the menus. 54
Control key. 3
curses. 57

D
Deleting characters. 5
Deleting lines. 5
Document. 3

E
Emergency Save. 23
Escape conventions. 25
Escape usage. 55
Escaping an input. 13
Executing a macro. 7
ExecutingUNI* X commands. 8
Exiting . 4

F
Fast GUI. 11
Features. 1
File. 3
File name completion. 13
File requester. 4, 8, 14
Flags. 6, 25

G
Global Directory. 11

H
Help requester. 14

I
Immediate input. 13
Input line . 13
Insert mode. 6
Interrupt character. 7, 57
Interrupting a macro. 7
Interrupting directory scanning. 14
ISO-8859 family. 59
ISO-8859-1. 59

K
Key bindings. 53
Keyboard usage. 3

L
Line and column numbers. 11
LITHP . 1
Loading a file. 4
Long input. 13
Long names. 25

M
Macro definition. 7
Magic cookie terminals. 57
Menu bar. 3
Menu usage. 3
Menus. 15
Meta key. 3, 53, 55
Mode. 57
MS-DOS files. 8
Multiple documents. 5

O
Opening a file. 4

P
Portability. 63
POSIX. 1, 57, 63
Preferences. 6
Printable characters. 63

Q
Quitting. 4
Quoting conventions. 25

R
Recording a macro. 7
Regular Expressions. 20

70 ne ’s manual

Repeating actions. 25
Requester. 14
Resource usage. 57

S
Saving a file. 4
Saving a macro. 7
Setting configuration file names. 11
Short names. 25
Shortcuts. 3
Shortcuts not working. 55
Skipping configuration files. 11
Startup macro. 11
Status bar. 3, 11
Syntax Highlighting. 15

T
termcap. 1, 57, 63

terminfo. 1, 57, 63
Turbo adjustment. 55
TurboText. 61

U
Undeleting lines. 5
Unloading macros. 7
UTF-8. 59
UTF-8 support. 8
UTF-8 Support. 23

V
vi . 1

W
Writing a file . 4

i

Table of Contents

1 Introduction . 1

2 Basics. 3
2.1 Terminology. 3
2.2 Starting. 3
2.3 Loading and Saving. 4
2.4 Editing. 5
2.5 Basic Preferences. 6
2.6 Basic Macros. 7
2.7 More Advanced Features. 8

2.7.1 UTF-8 support. 8
2.7.2 Bookmarks. 8
2.7.3 Automatic Completion. 8
2.7.4 MS-DOS files. 9
2.7.5 Binary files. 9
2.7.6 File requester. 9
2.7.7 ExecutingUN* X commands. 9
2.7.8 Advanced key bindings. 9

3 Reference. 11
3.1 Arguments. 11
3.2 The Status Bar. 11
3.3 The Input Line. 13
3.4 The Command Line. 14
3.5 The Requester. 14
3.6 Syntax Highlighting. 15
3.7 Menus. 15

3.7.1 File. 16
3.7.2 Documents. 16
3.7.3 Edit. 16
3.7.4 Search. 17
3.7.5 Macros. 18
3.7.6 Extras. 18
3.7.7 Navigation. 18
3.7.8 Prefs. 19

3.8 Regular Expressions. 20
3.8.1 Syntax. 20
3.8.2 Replacing regular expressions. 23

3.9 Automatic Preferences. 23
3.10 Emergency Save. 23
3.11 UTF-8 Support. 23

4 Commands. 25
4.1 General Guidelines. 25
4.2 File Commands. 26

4.2.1 Open. 26
4.2.2 OpenNew. 26

ii ne ’s manual

4.2.3 Save. 26
4.2.4 SaveAs. 26

4.3 Document Commands. 27
4.3.1 Quit. 27
4.3.2 Exit. 27
4.3.3 NewDoc. 27
4.3.4 Clear. 27
4.3.5 CloseDoc. 27
4.3.6 NextDoc. 27
4.3.7 PrevDoc. 27
4.3.8 SelectDoc. 27

4.4 Clip Commands. 28
4.4.1 Mark. 28
4.4.2 MarkVert. 28
4.4.3 Copy. 28
4.4.4 Cut. 28
4.4.5 Paste. 29
4.4.6 PasteVert. 29
4.4.7 Erase. 29
4.4.8 OpenClip. 29
4.4.9 SaveClip. 29
4.4.10 ClipNumber. 29
4.4.11 Through. 30

4.5 Search Commands. 30
4.5.1 Find. 30
4.5.2 FindRegExp. 30
4.5.3 Replace. 30
4.5.4 ReplaceOnce. 31
4.5.5 ReplaceAll. 31
4.5.6 RepeatLast. 31
4.5.7 MatchBracket. 32
4.5.8 SearchBack. 32
4.5.9 CaseSearch. 32
4.5.10 AutoComplete. 32

4.6 Macros Commands. 32
4.6.1 Record. 33
4.6.2 Play. 33
4.6.3 Macro. 33
4.6.4 OpenMacro. 33
4.6.5 SaveMacro. 34
4.6.6 UnloadMacros. 34

4.7 Undo Commands. 34
4.7.1 Undo. 34
4.7.2 Redo. 34
4.7.3 UndelLine. 35
4.7.4 DoUndo. 35

4.8 Formatting Commands. 35
4.8.1 Center. 35
4.8.2 Paragraph. 35
4.8.3 ToUpper. 36
4.8.4 ToLower. 36
4.8.5 Capitalize. 36
4.8.6 RightMargin. 36
4.8.7 WordWrap. 36

iii

4.8.8 AutoIndent. 36
4.9 Preferences Commands. 37

4.9.1 Flags. 37
4.9.2 AutoPrefs. 38
4.9.3 Binary. 38
4.9.4 Insert. 38
4.9.5 FastGUI. 38
4.9.6 FreeForm. 38
4.9.7 NoFileReq. 39
4.9.8 RequestOrder. 39
4.9.9 StatusBar. 39
4.9.10 HexCode. 39
4.9.11 ReadOnly. 40
4.9.12 EscapeTime. 40
4.9.13 TabSize. 40
4.9.14 Tabs. 40
4.9.15 Turbo. 40
4.9.16 VerboseMacros. 41
4.9.17 PreserveCR. 41
4.9.18 CRLF. 41
4.9.19 VisualBell. 42
4.9.20 PushPrefs. 42
4.9.21 PopPrefs. 42
4.9.22 LoadPrefs. 42
4.9.23 SavePrefs. 43
4.9.24 LoadAutoPrefs. 43
4.9.25 SaveAutoPrefs. 43
4.9.26 SaveDefPrefs. 43
4.9.27 Modified. 43
4.9.28 Syntax. 43
4.9.29 UTF8. 44
4.9.30 UTF8Auto. 44
4.9.31 UTF8IO. 45

4.10 Navigation Commands. 45
4.10.1 MoveLeft. 45
4.10.2 MoveRight. 45
4.10.3 LineUp. 45
4.10.4 LineDown. 45
4.10.5 GotoLine. 45
4.10.6 GotoColumn. 46
4.10.7 GotoMark. 46
4.10.8 PrevPage. 46
4.10.9 NextPage. 46
4.10.10 PageUp. 46
4.10.11 PageDown. 46
4.10.12 PrevWord. 46
4.10.13 NextWord. 47
4.10.14 MoveEOL. 47
4.10.15 MoveSOL. 47
4.10.16 MoveTOS. 47
4.10.17 MoveBOS. 47
4.10.18 MoveEOF. 47
4.10.19 MoveSOF. 47
4.10.20 MoveEOW. 47

iv ne ’s manual

4.10.21 MoveIncUp. 47
4.10.22 MoveIncDown. 48
4.10.23 AdjustView. 48
4.10.24 ToggleSEOF. 48
4.10.25 ToggleSEOL. 48
4.10.26 SetBookmark. 48
4.10.27 GotoBookmark. 49
4.10.28 UnsetBookmark. 49

4.11 Editing Commands. 49
4.11.1 InsertChar. 49
4.11.2 InsertString. 49
4.11.3 InsertTab. 50
4.11.4 DeleteChar. 50
4.11.5 DeletePrevWord. 50
4.11.6 DeleteNextWord. 50
4.11.7 Backspace. 50
4.11.8 InsertLine. 50
4.11.9 DeleteLine. 50
4.11.10 DeleteEOL. 50

4.12 Support Commands. 51
4.12.1 About. 51
4.12.2 Alert. 51
4.12.3 Beep. 51
4.12.4 Exec. 51
4.12.5 Flash. 51
4.12.6 Help. 51
4.12.7 NOP. 52
4.12.8 Refresh. 52
4.12.9 Suspend. 52
4.12.10 System. 52
4.12.11 Escape. 52
4.12.12 KeyCode. 52

5 Configuration . 53
5.1 Key Bindings. 53
5.2 Changing Menus. 54

6 Hints and Tricks . 55

7 Motivations and Design. 57

8 The Encoding Mess. 59

9 History . 61

10 Portability Problems . 63

11 Acknowledgments. 65

Command Index . 67

Concept Index . 69

