
ccbuild - A strict developer’s build
utility
A. Bram Neijt

2.0.1

Abstract

This document is a general usagemanual to ccbuild . It will introduce ways of using ccbuild . It
will also explain ccbuild ’s behaviour in more words then the manual does. The newest version
of ccbuild can be found at the http://www.logfish.net/pr/ccbuild/

Copyright Notice

Copyright © 2005 A. Bram Neijt

This manual is free software: you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.

It is distributed in the hope that it will be useful, but WITHOUT ANYWARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with ccbuild . If not,
see http://www.gnu.org/licenses/ .

i

Contents

1 Introduction 1

2 How it works 3

3 Using ccbuild 5

3.1 Organizing your source . 5

3.2 Building a program . 7

3.3 Cleaning up . 7

4 Moving to ccbuild 9

4.1 Strictness to adhere to . 9

4.2 Setting up your configuration file . 10

5 Moving from ccbuild 11

5.1 General build file generation . 11

5.2 Generating A-A-P files . 11

6 Problem solving with ccbuild 13

6.1 You changed a class interface . 13

A The tools directory 15

A.1 genPkgconfigList.sh . 15

A.2 ccbuildStatusPage.sh . 15

B Categorically sorted command line parameters 17

CONTENTS ii

1

Chapter 1

Introduction

Programming should not become an administrative task. With most of the tools on the net I found
myself either adding file names to scripts (and removing them) or digging deep into the core of
some scripting language to try automate my builds. At first I ended up with a clumsy, to say
the least, collection of find , grep , sed and bash . Combined they formed a script to generate
Makefiles dispatched over multiple directories. The complexity quickly grew out of hand and it
left mewith a lot of clutter aroundmy source. The second incarnation helped to generate autotools
scripts. I had to run ./configure to get the new scripts to generate real Makefiles, followed by
make. If you commonly add and remove files, updates are slow.

It was a depressing way to develop, because most additions to the project I made required me to
run all those scripts. On top of that, it would take about 30 seconds, or so it felt.

You would say, well why not use an IDE? Well, trouble here was I wanted to split up my code in
separate files. . . a lot of separate files. Not only do I separate my code into directories, I also use
seperate files for functions of the same class. No IDE allowed me to do this without the hassle
of having to go through a few menus (create file, register it as source, set is as part of the main
program, etc.). Those who did, often used autotools in the background and would have to re-
autotool on every added file. Frustrated, I almost gave up on my coding ethics and started to do
it the way the masses do: 900+ lines of code in a single file, only accessible through a specially
equipped text editor or full scale IDE.

The closest thing to perfection out there was icmake . This only requires you to mention the direc-
tories you use and will keep your development tree clean, however it had two small drawbacks:
you needed to mention your classes and you could not use directories in directories. So, I decided
to create a fast and simple program to solve my problem.

Although you have to keep some standards (split source over directories) to get ccbuild to work
on your program, I found it almost completely eliminated my interaction with the build system.
Better yet, it helps with bootstrapping other build systems.

Chapter 1. Introduction 2

3

Chapter 2

How it works

To know how to work with ccbuild is of course the most important thing (if you want to). So
here is a quick and simple review of the internals.

We will now consider what happens when ccbuild is called without any arguments.

First ccbuild will find all source files in the current directory (using the list of source extensions
to find them.) All these files are scanned which gives an in memory list of include statements and
whether it has a main function.

If it has a main function, it is considered a binary target: ccbuild will try to make a program
from this.

To find all the object files that need to be linked to the main program, ccbuild will follow all
local include statements (warning if any fail). Then it will scan all files in the same directory as the
included files. If they are object targets (don’t have a int main function) they will be compiled
and linked to the main program.

The arguments needed to compile an object are gathered by the global includes. Using the ccRes-
olutions file, for every global include the arguments are added.

The needed linker arguments (which would create the “not linking now” warning) are identified
and kept back for later use when the program is actually linked. If anything goes wrong here,
please mail me and hack the file src/Compiler/countFirstLinkerArguments.cc for the
meantime. This file contains two simple lists for for options with and options without arguments.

Chapter 2. How it works 4

5

Chapter 3

Using ccbuild

3.1 Organizing your source

ccbuild will read your local includes (#include "something") and compile any source next to it
into your program or library. For every class you want to use, make sure you create a separate
directory. Every directory contains source files which define the different members of your class.

Because every member of a class has it’s own file, each of these files will have an approximately
equal header. To keep us from typing “using namespace” and “include <iostream>” for each of
these files, a so called internal header file is created. The internal header file is the only file the
member implementation include and is identified by the extension .ih .

An example member implementation is given fileSystem/touch.cc :

#include "fileSystem.ih"

bool FileSystem::touch(std::string const &filename)
{

ofstream file(filename.c_str(), ios::app);
bool succes = file.is_open();
file.close();
return succes;

}

The internal header file, fileSystem/fileSystem.ih :

#include "fileSystem.hh"
#include <fstream>

Chapter 3. Using ccbuild 6

#include "../options/options.hh"

using namespace std;
using namespace bneijt;

The header file defines the FileSystem class in the bneijt namespace and includes only what
is needed for it’s declaration.

Splitting the source up like this will get you a lot of files, but will make editing and hacking your
code simple. The functions are easy to find, quick to open and easy to grasp. Furthermore, ver-
sion control software will encounter less collisions and patches will merge more easily on quicker
moving code.

The main program is in the root of the source. ccbuild has the following listing:

./fileSystem/touch.cc

./fileSystem/fileSystem.ih

./fileSystem/isDirectory.cc

./fileSystem/cleanPath.cc

./fileSystem/modTime.cc

./fileSystem/fileExists.cc

./fileSystem/isReadable.cc

./fileSystem/absolutePath.cc

./ccResolutions

./string/replace.cc

./string/test.cc

./string/string.ih

./string/toUpper.cc

./string/string.hh

./options/options.hh

./options/options.ih

./options/statics.cc

./ccbuild.cc

The top most file is ccbuild.cc , which contains a special function: int main . ccbuild does
not care about the arguments the main function takes, but it does care about it being int main .
This is what ccbuild calls a binary target, a file that is the root of a binary.

Chapter 3. Using ccbuild 7

3.2 Building a program

To build a configured ccbuild compatible source tree, simple run ccbuild in the directory
containing the main program. This will compile all programs in the given directory. How-
ever, if you only want to compile one given program, issue the command ccbuild build
mainsource.cc , where mainsource.cc should be the name of the main source file.

Once the command is issued, ccbuild will start reading includes the source does and gather
sources it should compile. Any sources it can find will be compiled and linked to the main pro-
gram. Once the [LINK] mainsource line get’s done, without any errors, your main program
will be done and you can start it with ./mainsource .

3.3 Cleaning up

For cleaning your sourcetree, ccbuild offers two commands: clean and distclean . Although
they might act almost the same, they are implemented quite different.

The distclean command is totally source independent: it does not scan sources, nor look for
them. Distclean simply removes all ccbuild related file in the “o” directory and all “.gch” files
everywhere. If the “o” directory is empty after that, the directory is removed as well.

The clean command is much more subtle: it reads the sources and removes any objects part of
the current source tree. Because it reads the sources, using clean will only remove those sources
part of the given or implied main binary target(s). This command will not remove any directories.

General rule is to use the force command when you want to update everything, use the clean
when you want to remove all files for a local binary target (but not any other binary targets in the
local directory) and use distclean to remove everything including old objects and pre-compiled
headers.

Chapter 3. Using ccbuild 8

9

Chapter 4

Moving to ccbuild

To be able to use ccbuild , you as a developer will have to adhere to some strict(er) rules then
using something like autotools. Here is a list of things you should keep in mind when moving to
ccbuild .

4.1 Strictness to adhere to

• ccbuild only reads local includes

When creating your source, make sure that all sources that ccbuild should care about can
be found using local includes. This means you should strictly use system wide includes
only for actual system wide include files. So any header file which is part or your packages
should be included using a local include statement.

• Preprocessing isn’t helping

To speed up ccbuild , it does not go around looking for system wide headers. This also
means that it won’t know all the preprocessing directives from these headers. This results in
preprocessor excludes of local headers cannot be used. This is no problem if you are com-
piling for a single platform, but when you need configuration using preprocessor directives,
you’re going to get into trouble.

The only way to keep ccbuild from reading these sources is by making sure there is
a single space between the # and the include statement. So the include # include
“something/hello.hh” will be ignored by ccbuild . To test this, run ccbuild in ver-
bose mode (--verbose) and watch for the warning which state that the file in not included.
You can also use the deps command to get a list for all binary targets.

Chapter 4. Moving to ccbuild 10

4.2 Setting up your configuration file

To set up your ccResolutions file, it’s best to do the following steps:

1 Check your local includes span over your whole source

To make sure ccbuild was able to follow your local includes, use the deps command. This
will list all the local and global dependencies of a file. You may also use the dot command
to get a graphical interpretation of the same information.

All paths that ccbuild needs to search for local includes should be added to the first line of
your ccResolutions file. Using -l in this first line will make ccbuild highlight all compiler
output.

#& -I../tools -I. -l

2 Add packages to your global ccResolutions

You can add a package to your global resolution configuration using the genPkgconfigList.sh
tool. This will find all files in the include path of a package’s include paths and add them to
a resolution file. See the Tools section for more information.

3 Check the global includes are resolved

To make sure the global includes are resolved, use the resolve command.

ccbuild resolve |sort >> ccResolutions

Now all unresolved global headers are listed in your ccResolutions file. When you run
ccbuild now, it won’t complain about any global includes missing. However, g++ might
complain because the needed extra arguments are not in place. You should now add
the needed arguments to your ccResolutions file by using, for example, ‘pkg-config
--cflags --libs <packagename>‘ with the needed package in place.

If you have a lot of resolution rules in your defaults (~/.ccbuild/), then it might be hard
to see what your project actually depends on. Passing ccbuild the option --nodefres
will cause it to skip loading these files and will allow you to see which resolutions fail. This
might give you some hints on what packages your program depends on.

11

Chapter 5

Moving from ccbuild

There will be a day you want to move away from ccbuild . When the day comes, you would
probably only be able to use ccbuild for it’s dependency generation commands.

To make ccbuild useful in these later stages, ccbuild has a few commands to help you cope.
Don’t forget, you can remove all ccbuild generated files using:

ccbuild distclean;
rm ./ccResolutions;

The build script generation commands only read source and, should not generate any output.

5.1 General build file generation

ccbuild can generate a number of different files for different build systems. When you call
ccbuild with a build generation command without a source file, it will try to create a standalone
file for that build system. Which will also contain an all rule.

For most systems however, you don’t want the all rule to be defined. So, ccbuild allows you to
state which source you want a build file for. This will then generate a build file without the all
rule. Then simply include this build file into your main build file and write the all rule yourself.

5.2 Generating A-A-P files

One of the most useful generation features is probably the A-A-P file generation. You can use this
by calling ccbuild with the aap command. This will generate an A-A-P file on the stdout.

The most common way of using this aap file is by generating it for a single binary target using:

Chapter 5. Moving from ccbuild 12

ccbuild aap mainsource.cc > mainsource.aap

Or

ccbuild aap src/mainsource.cc > mainsource.aap

Then create a main.aap file with the following line:

:include mainsource.aap

all : ./mainsource

Or

:include mainsource.aap

all : ./src/mainsource

Add any recipes needed and then use aap to generate the main program.

13

Chapter 6

Problem solving with ccbuild

This is a collection of possible real usage examples for ccbuild . If you don’t want to take the
time to read the manual pages, this is a more problem oriented listing of the same.

6.1 You changed a class interface

When you change a class interface, a large collection of your code will probably break down.
But which parts? Well, a hint of which files will be affected can be seen using ccbuild check .
However, this won’t show you whether these sources still compile or not. The only way to test
that is by simply running ccbuild .

Solution: Use an editor running in the background (something that returns after using the com-
mand). An example is using the gedit command when you already have a window open: new
files will be opened in a tab and the gedit command will return immediately. So, using gedit, the
easiest way to get an overview of your problems would be: ccbuild –brute –xof “gedit”

Chapter 6. Problem solving with ccbuild 14

15

Appendix A

The tools directory

The tools directory contains a few scripts and default files that may come in handy. These are not
meant to be used a lot and are mostly there as examples of using ccbuild in combination with
other programs. These utilities are often crude and come with NO WARRANTY WHATSOEVER.

Bottom line: read them before you use them and enjoy.

A.1 genPkgconfigList.sh

This script will generate a list of includes that might be part of the given package. The scripts
needs to get a valid package name as it’s first argument. It will then call pkg-config to get a list of
include paths used for the package. All these paths are searched and all files found are linked to
the package using pkg-config in a way that is compatible with ccResolutions syntax.

This list will be very large, and it’s not, generally, a good idea to add this list to your local ccReso-
lutions file. A better way of using this is by adding the file to your ccResolutions.d directory under
the name of the package.

Using this is of course a brute way of handling resolutions, because it’s much nicer to only resolve
the ones you need.

A.2 ccbuildStatusPage.sh

This is a small ccbuild status page creation script. All command line arguments you give it will
be passed to ccbuild directly. It runs “ccbuild check” to check which files are up to date and
which are not. Then using AWK it translates this into a small auto-refreshing web page. The web
page uses ccbuild.css as it’s style sheet.

Chapter A. The tools directory 16

General usage for a single run is:

sh ccbuildStatusPage.sh -C "someproject/src"

Then use your favourite browser to open the generated html file: ccbuildstatus.html.

You can easily loop it in the background using:

while [[1]];
do sleep 5;
nice sh ccbuildStatusPage.sh -C "someproject/src";

done;

By default the up to date files are not shown by using “display: none” in the ccbuild.css. Remove
this line from ccbuild.css to show all up to date files as well.

17

Appendix B

Categorically sorted command line
parameters

Here is list of the command line parameters divided over categories. If you think you know
ccbuild , go down this list. If you don’t think a given argument is in the right position, you
might need to read up on it. Please refer to the ccbuild manual for a full explanation of these
flags and arguments.

Command execution influencing arguments (the actual system call): --compiler , -a , --args ,
-I , --recursive-include , --xof , --exec-on-fail , --xop , --exec-on-pass , --append
and Resolution arguments.

Global header resolution effecting arguments: -C , --nodefres , --addres and --nodefargs
(if the default commands contain any of the before mentioned).

Command (build/lib/distclean etc.) effecting arguments: -s , --no-act , -p ,
--precompile-ih , --precompile-all , --brute , --loop , --verbose .

Arguments that won’t, normally, change the resulting binary or output: -f , --force-update ,
--gnutouch , --md5 , --real-man , -l , --highlight , --xof , --exec-on-fail , --xop ,
--exec-on-pass , --clearpc , --append .

Read only actions are:

• Anything with -s or --no-act

• The commands: resolve , md5, deps , dot filename.cc , makefile , aap , check and
icmake .

