Appendix B : Application Programming
Interface Reference

Please note that this appendix is only available in English.

Introduction

"TRADOS Translator’s Workbench is shipped with templates that enable data exchange
between Translation Memory databases and your word processor. However, text to translate not
only occurs in word processors but also in such applications as spreadsheet or presentation
programs, for example. Many of these applications are equipped with an interface that allows
communication with other programs through what is referred to as an Application Programming
Interface (API). Translator’s Workbench 2 is also equipped with an API. This makes it possible
to access Workbench functionality from those applications. In general, API-enabled programs
offer a development environment like macro editors in which the code for the user-defined
functions can be written. This manual contains a description of the Translator’s Workbench
functions that are available through its API.

Writing Conventions

Command lines are given before the instruction they refer to. Sets of values are listed in curly
brackets. Each item of the set is separated by a semicolon.

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

B-2

Application Programming Interface Reference

API Description

API Tutorial

The API’s class module is TW4Win. It has three subclasses on separate levels. The first-level
class is TranslationMemory. The second-level class depending from it is TranslationUnit which in
turn contains the third-level class Term. The class module and the TranslationMemory class are
described in the API tutorial below. The TranslationUnit and Term classes will be covered in
separate sections.

The diagram below provides an overview of all classes, methods and properties available in the
Translator’s Workbench API. It also shows the dependency relation between methods,
properties and their respective classes. Classes are represented by boxes, methods by ovals, and
properties by parallelograms.

Dependency Structure of Translator's Workbench Classes

Translation "
TW4AWIN Memory Ti WUnit Term

Change
Date

Application AnalyzeFiles

Change

PinOnTop User

CleanupFiles Next

Quit Close crg::':” Previous

g

ol

Creation

Concordance
User

dofieh

Previous

Open Save

Search

Source
Language

Target
Language

TranslateFiles

[
W 0

Usage
Counter

UsedDate

Figure B-1: Dependency structure of Translator’s Workbench API Classes

The methods in the diagram above correspond to commands that allow access to Translation
Memory at various levels. We will describe and explain them below in the form of a tutorial.
Short examples show how to implement the methods. This will allow you to follow the
instructions step by step. At the same time a sample program is created that will help you
understand the core functionality of the Translator’'s Workbench API. The examples below have

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

API Description

B-3

been written in Visual Basic for Applications as found in Microsoft Office 97. Proficient C++
programmers should be able to easily transfer them to their programming language.

Preparing Word97® For Writing Programs With Visual Basic For Applications®

1. Start Word97. To open the editor for Visual Basic for Applications press <Alt> + <F11> or
select the Macro command in the Tools menu. From the sub-window select Visual Basic

Editor.

W Microsoft Word - Document1 [_ O] x] |
@ File Edit View Insert Format | Tools Table Window Help Trados _I_I-] ﬁl|
DEE[SRY & 5V . F?

3
Normal = Times Mew Roman Language
word Caunt. .,
(G + [o ®® % aosummae.
h_l AutoCorrect,.. 3
_ Track Changes >
Merge Documents.. .
Protect Document...
Mail Merge. ..
=1 Erwvelopes and Labels. .
Letter Wizard..,

} Macros...

Templates and Add-Ins...

Cushomize...
Opkions. ..

+

@

¥
|Page 1 Sec1 §y1 [AE2S5m Lnl Coll = i e A

@ Record New Macro...

sic Editor— Alk+F11

Ale+F8

Figure B-2: Starting the Visual Basic Editor

The editor window opens. The next step is to inform the Visual Basic environment that you

want to use the Translator’s Workbench API and where the class module is located on your
system. Therefore we have to load the Translator’'s Workbench type library. Open the Tools
menu and select the Reference command. The Reference window opens. Click on Browse
to locate the Workbench type library. Let’s assume that the Workbench is installed in
C:\Trados\'TW4Win. Go to this directory, select the file TW4Win.tlb and click on Open.

Add Reference EHE
Lockin: |53 Twéwin =l =1
SE_drur [#] Sw32u dl TwidwinLingua di
Dangle TRServerth TwWawinT ext i
Lng
Ht_divr T dw/inB asis 32 dl
A dl T dinfinD) stabase, dl
Cipwin.di [#] Twiwininterace.dil

File name: |T\N’4W\n.t\b

Files of type: IType Libraries [%.olb:" tb:*.dl]

Open
ﬂ Cancel

Figure B-3: Selecting the type library

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

Application Programming Interface Reference

3. The entry TW4WIN is added to your Reference window. Use the up or down arrow to
move the entry at the desired position. Click OK to close the Reference window.

References - Project

Available References:
v wisual Basic For Applications - Cancel I

W] Microsoft Word 5.0 Object Library

¥l OLE Automation

Wl Micrasaft Farms 2.0 Object Library Browse... I
| Mormal

¥ Microsoft Office &.0 Object Librar ﬂ

cal

[TemplateProject Priority

ClDesaware Spyiwarks Support OLE Contral Help |
CMicrasaft DAO 2.5/3.5 Compatibility Library: ﬂ

CIMicrosoft DAO0 3.0 Ohiject Library
[IMicrosoft DAO 3.5 Object Library

[IMicrasaft Excel 5.0 Object Library

[Microsoft Grash 8.0 Obiect Library _'Ll
4 3

[TwWaWin

Location: D:\Apps| Trados) TWHWIN|Z. 0\ TswHwin,Hh
Language: Standard

Figure B-4: Reference List with Workbench library

4. Itis recommended that you use the Object Browser to have an overview of Workbench API
functions. Open it by pressing <F2> or select the Object Browser command from the View

menu.

icrosoft Visual Ba: Document1

it | Wiew Insert Format Debug Run Tools Window Help

oo ek e O

Shift+F7

Definition ShiftHE2
[LastPESTEn G it

SER N
E Immediate Window Ctrl+G
Locals Window

B watch Window

iEF G Bt il

2% Project Explarer Cirl+R
Properties Window F4

S Toolioe

Tt Grder
Toolbars

¥ Microsoft Ward — Al+F1L

Figure B-5: Opening the Object Browser

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

API Description

B-5

5. The Object Browser opens. In the upper selection box pick the value TW4WIN. Now you
can see the Translator’s Workbench classes in the browser. Select the class you are
interested in and the methods and properties are displayed. Click on an item in the right
panel and you will see its type, parameters and a short description.

<+ Dbject Browser [_ O] x| |
w51 || Bs]%] 2]
I -l 8l
Classes Members of Translationtemary'
@ =globals= |=® AnalyzeFiles
2 Application =@ CleanupFiles
&) Term l-® Close
I5/8 Trans|ationhemary =% Concordance
&) TranslationUnit |=® Filename
=& HitCount
[=® Open
=% Gearch
|=® Sourcelanguage
=% TargetLanguage
=& TranslateFiles
&' TranslationUnit
Class TranslationMemory ﬂ
Member of TWaANin
Provides sccess to transkation memary functions: LI

Figure B-6: The Object Browser window

6. Now you are ready to write your first program with the Translator’s Workbench API
functions.

Accessing the Application

To be able to access a Translation Memory an object has to be created first of all. This object
will then later refer to a running Translator’s Workbench instance. This is achieved by declaring
a variable of the “Object” type. The next step is to start a Translator’'s Workbench and
instantiate the object. The name of the class module is TW4Win and the method that launches a
Workbench is Application.

Public Sub Main()

"Decl are a variabl e named Workbench which refers to an object
Di m Wor kbench As bj ect

'Start a new Translator's Workbench

Set Workbench = CreateObject("TW4Win.Application")

After executing these instructions, a new Translator’s Workbench will be started up. Such
Workbench settings as penalties, window dimensions, etc. are stored in the registry in the key
My Computer\HKEY_CURRENT_USER\Software\TRADOS\TW4Win and its subkeys Last
Directory, Last Session, Options and Tools. At normal (that is, non-API controlled) start-up,
Translator’s Workbench reads the complete contents of these keys and initialises all settings
with the values it finds there. As a result, when you start Translator’s Workbench from your
desktop, the last opened Translation Memory will be re-opened automatically. However, when
launching T'ranslator’s Workbench through its API, this step is omitted. So, after the execution of
the above instruction 7o T'ranslation Memory will be opened.

Loading a Translation Memory

Since a TM is not opened when the Workbench is started through the API, this must be done
explicitly using the Open method. This method has three parameters. The first obligatory
parameter contains the full path and name of the Translation Memory. The second also
obligatory parameter contains a UserID. This may be the ID of a “real” user as well as the ID of
a “virtual” one. For instance, you may want to use a virtual user ID to indicate that Translator’s
Workbench is accessed through the API. The third parameter is usually optional and contains the
password for the user specified. It is obligatory, however, if access rights have been specified in

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

Application Programming Interface Reference

the Translation Memory setup. For details on access rights, see the “Network Operation”
chapter of the Translator’s Workbench User’s Guide.

"Open the TMdeno.tmw in the path C\Trados\TwdWn with the userl D FLAGVAN

"who has the password "ahead"

Wor kbench. Tr ansl ati onMenory. Open "C:\ Trados\ Tw4W n\ deno. t mw', "fl agnan",
"ahead"

If the TM can be opened successfully, the following properties are instantiated: Filename,
SourceLanguage, and TargetLanguage. These properties can be used for testing whether the
Translation Memory was opened successfully or not.

Searching the Translation Memory

To find a sentence in Translation Memory the Search method is used. This method looks
through the TM to find one or more matching sentences in the source segment of a translation
unit. Such settings as the minimum match value or the maximum number of hits are taken into
account during this search (see the “T'ranslation Memory Options” chapter for details). If the
search is successful the corresponding unit will be opened and the result will be displayed in the
Translation Memory window. At the same time all properties related to the Translation Memory
and current translation unit are instantiated. The HitCount property can be used to determine if,
and how many, matching sentences have been found. If the search is successful, this property
will contain the number of matches from the TM. Otherwise it will have the value 0.

"Performa search for a string
Wor kbench. Transl ati onMenory. Search ("Wat exactly is a Translati on Menory

(TM ?")

Saving a Translation

The Save method is used to save a translation in Translation Memory. If a previous search was
without result a new translation unit will be created. If a previous search was successful the
previous translation will be overwritten with the new one. After this the translation unit will be
closed so that the system is ready for the next search.

"Assign a string as new translation to the open segnent
Wor kbench. Transl ati onMenory. Transl ati onUnit. Save ("Was genau ist ein
Transl ati on Menory (TM?")

Concordance Search

The API can also perform a Concordance search, that means, it can search for all translation units
that contain a specific word or phrase. The method for this is called Concordance. It works like
the Search method, that is, a search string has to be specified as the parameter of this method.
The search results will be displayed in a Concordance window. This window will close once
Translator’s Workbench is exited.

"Search for all sentences that contain the term"Transl ation Menory"
Wor kbench. Tr ansl ati onMenory. Concordance ("Translation Menory")

Calling Batch Functions

Translator’s Workbench has three so-called “batch functions” which are Analyze, Translate and
Cleanup (see the “Document Analysis, Translation, and Cleanup” chapter for details). These
functions can be executed through the API. The corresponding methods are AnalyzeFiles,
TranslateFiles, and CleanupFiles. Each of the methods uses a job file as parameter. The job file
contains the settings for the batch functions. For further details see “The Job File” on page B-
25.

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

API Description

B-7

" Anal yze docunents using the settings specified inthe job file
Wor kbench. Transl ati onMenory. Anal yzeFil es ("C:\ Trados\ TwAW n\ j ob. t xt")

"Transl ate docunents using the settings specified in the job file
Wor kbench. Transl ati onMenory. Transl ateFil es ("C:\ Trados\ Tw4W n\j ob. t xt")

"Clean up docunents using the settings specified in the job file
Wor kbench. Transl ati onMenory. C eanupFi l es (" C:\ Trados\ TwAW n\ j ob. t xt")

Closing a Translation Memory

At the end of each program using the API, the current Translation Memory should be closed
with the Close method. Any open remaining translation unit will be closed without saving. After
the execution of this method it is possible to open another Translation Memory.

"Close the TM
Wor kbench. Transl ati onMenory. C ose

Exiting Translator's Workbench

Likewise, Translator’s Workbench should be closed properly with the Quit method. When
exiting Translator’'s Workbench, the current user settings are written to the registry key
My Computer\HKEY_CURRENT_USER\Software\TRADOS\TW4Win. Translator’s Workbench will
also close if the program from which it was called is terminated, but in this situation it is not
assured that all settings are written correctly to the registry. Therefore it is strongly
recommended that Translator’'s Workbench be exited with the Quit method. Any remaining
open Concordance windows will also close once this method is called.

"Exit Workbench
Wor kbench. Qui t

The “TranslationMemory” Properties

As already mentioned above, the Filename property contains the path and name of the current
Translation Memory database. HitCount contains the number of matching translation units after
a search. It is 0 if no match has been found. SourceLanguage and TargetLanguage contain the
ID of the input locale of each language. In addition to these items, you can use the PinOnTop
property which directly depends on the TW4Win class. It determines whether the Workbench
program window is the topmost window or not. The program sample below shows how these
different information items can be displayed through the APIL.

"Show the path and the name of the current TMin a nessage box
MsgBox "The current Translation Menory is: " &
Wor kbench. Transl ati onMenory. Fi | eNane, vbl nformati on

"Read the locale ID of source and target |anguage into variables
SrcLng = Workbench. Transl ati onMenory. Sour ceLanguage
TrglLng Wor kbench. Transl ati onMenory. Tar get Language

"Display the source and target |anguage in nessage boxes

MsgBox "The current source |anguage is: " & Languages(SrcLng). Nane,
vbl nformation

MsgBox "The current target |anguage is: " & Languages(TrgLng). Nane,
vbl nformation

" Make Workbench the topnost w ndow
Wor kbench. Pi nOnTop = True

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

B-8 Application Programming Interface Reference

The “TranslationUnit” Class

The TranslationUnit class enables you to read or change the contents of a translation unit.

TranslationUnit Methods

One TranslationUnit method has already been used in the tutorial, namely the Save method. It
stores a translation together with the source sentence in Translation Memory. If a search results
in more than one matching translation unit the user can access the other matches through the
Next and Previous method. When one of these methods is called the next or previous matching
translation unit is displayed in the Translation Memory window of the Workbench. At the same
time all translation unit properties are instantiated with the values of the corresponding T'U.

"Go to the next matching TU

Wor kbench. Transl ati onMenory. Transl ati onUni t. Next

"Go back to the previous TU

Wor kbench. Transl ati onMenory. Transl ati onUni t. Previ ous

TranslationUnit Properties

The properties of a translation unit are too numerous to be mentioned here. Most of them
correspond to system fields that are specified when creating a new Translation Memory. If a
system field does not exist or is not filled, the corresponding property will remain empty. For a
comprehensive overview of system fields, see “Creating a new Translation Memory” in the
User’s Guide. Apart from system fields, the TranslationUnit class contains four properties that are
worth taking a brief look at. The Score property contains the match value of a found translation
unit. The number of recognised terms can be retrieved via the TermCount property. Source and
Target contain the contents of the source and target segment of the current translation unit. The
sample program below illustrates the use of these properties.

"Declare a variable naned TU which refers to an object
Dim TU As bj ect

"Assign the object TranslationUnit to the variable
"This will shorten the statenents needed to access a TU
Set TU = Workbench. Transl ati onMenory. Transl ati onUni t

"Display the current match value in a message box
MsgBox "The current match value is: " & TU. Score, vblnformation

"Di splay the number of found terns in message box
MsgBox "The nunber of found terns is: " & TU. TernCount, vblnformation

"Di splay the source and target sentences in nmessage boxes
MsgBox "The current source sentence is: " & TU Source, vblnformation
MsgBox "The current target sentence is: " & TU Target, vblnformation

The “Term” Class

The Term class provides access to the results of terminology recognition. If terminology
recognition is not active its methods will have no effect and the properties will remain empty.
My Computer\HKEY_CURRENT_USER\Software\TRADOS\TW4Win\Options\TermRecognition is
the registry key that contains the status of this option. If the key has the value 0, term
recognition is inactive; if it is 1, term recognition is active.

Term Methods

The two methods in the Term class are Next and Previous. They are used for browsing from one
found term to the next and vice versa. Not surprisingly, Next scrolls to the next found term. If
the sentence boundary has been reached, Next will again scroll to the first term. Likewise, the
Previous method is used to scroll backwards through the known terms of a sentence.

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

API Instructions: Reference List B-9

Term Properties

Workbench uses fuzzy-matching algorithms for terminology recognition. The Found property
contains the term from the source sentence for which Translator’s Workbench has retrieved a
match from the terminology database. The source term from the termbase is stored in the
Source property. Since fuzzy-matching is used the contents of Found and Source may be
different. The translation of the term is stored in the Target property. From here it can be copied
to the translated sentence, for instance. The sample script below illustrates the use of the Term
class.

"Decl are a variable naned Terns which refers to an object
Dim Terns As (bj ect

"Assign the object Termto the variable

"This will shorten the statenents to acces the Termcl ass
Set Terms = Workbench. Transl ati onMenory. Transl ationUnit. Term

"Assign the nunber of found terns in the open sentence to the variable
Ter mNum
Ter mMNum = Wor kbench. Transl ati onMenory. Transl ati onUni t. Ter mCount

"Loop through all found terms
For i = 1 To TermNum

"Display the terminformation in message boxes
MsgBox "The termin the source sentence is: "

MsgBox "The source termin the ternbase is:
MsgBox "The target termin the ternbase is:

& Ter ms. Found
& Terms. Sour ce
& Ternms. Tar get

"Go to the next term
Ter ms. Next

Next i

API Instructions: Reference List

All classes, methods and properties that are available in the Translator’s Workbench (TW4Win)
object browser are listed below in alphabetical order.

Concept Description

AnalyzeFiles This method is the equivalent to the Analyze command from the Tools menu. It
analyzes documents as specified in the [Analyze] section of the job file.

Application TW4Win.Application starts Translator’s Workbench. At startup the settings in the
"My Computer\HKEY_CURRENT_USER\Software\'TRADOS\'TW4Win"
branch are read from the registry. This branch contains general Workbench user
settings (but not the Translation Memory setup).

ChangeDate This property returns the date of the last change to the current translation unit as
specified in the system field with the same name.

ChangeUser This property returns the ID of the user who last changed the current translation
unit.
CleanupFiles This method is the equivalent to the Clean Up command from the Tools menu.

It cleans up translated files as specified in the [Cleanup] section of the job file.

Close This method is the equivalent to the Close command from the File menu. It
closes the current Translation Memory.

Concordance This method is the equivalent to the Concordance command from the Tools
menu. It starts a Concordance search for the text specified in the parameter. The
search is performed using the current settings for Concordance searching as
specified in the Concordance tab of the Translation Memory Options dialog.

CreationDate This property returns the date on which the current translation unit was created.

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

Application Programming Interface Reference

Concept Description

CreationUser "This property returns the ID of the user who created the current translation unit.

Filename This property returns the filename of the current Translation Memory.

Found This property returns the current source term as found in the terminology
database. This property only contains one term at a time. If multiple terms were
found in a segment the Next or Previous methods can be used to access them.

HitCount This property returns the number of matching translation units found in the last

search.

Next (Translation
Unit class)

This method scrolls to the next matching translation unit. When the last
translation unit is reached and the method is called again it still returns the last
matching translation unit.

Next (Term class)

This method is the equivalent to the Get Next Term command from the Trados
menu. It scrolls in a ring to the next found term. That means if the last term is
reached and the command is used again this method will return to the first term.

Open This method is the equivalent to the Open command from the File menu. It
opens the Translation Memory as specified in the Filename parameter.

PinOnTop This property is the equivalent to the Pin on Top command from the View menu.
If set to “T'rue” Translator’'s Workbench is the topmost window. If set to “False”
it may be hidden behind other windows.

Previous This method scrolls to the previous matching translation unit. When the first

(Translation Unit
class)

translation unit is reached and the method is called again it still returns the first
matching translation unit.

Previous (T'erm
class)

This method is the equivalent to the Get Previous Term command from the
Trados menu. It scrolls in a ring to the previous found term. That means if the
first term is reached and the command is used again this method will return to the
last term.

Quit This method is the equivalent to Exit command from the File menu.

Save This method is the equivalent to the Set command from the Trados menu. It
writes a new translation to the current translation unit.

Score "This property returns the match value of the current translation unit.

Search This method is the equivalent to the OpenGet command. It transfers the string

given in the parameter to the Translation Memory and searches for matching
translation units.

Source (Translation
Unit class)

This property returns the source sentence of the current translation unit.

Source (Term class)

This property returns the current term as found in the current segment. That
means the term is returned as it occurs in the document to translate. Since
terminology recognition uses fuzzy searching the source term may be different
from the term found in the terminology database (returned by the Found
property).

SourcelLanguage

This property returns the ID number of the source language locale. It can be used
to determine the source language of the current Translation Memory.

Target (Translation
Unit class)

This property returns the target sentence from the current translation unit.

Target (Term class)

This method is the equivalent to the Get Current Term command from the
T'rados menu. It returns the translation of a found term.

Targetlanguage This property returns the number of the target language locale. It can be used to
determine the target language of the current Translation Memory.

Term This class provides access to the terminology recognition results. Its methods are
Next and Previous. It has the properties Found, Source and Target.

TermCount This property returns the number of terms in the current sentence as found by

terminology recognition.

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

API Instructions: Reference List

B-11

Concept

Description

TranslateFiles

This method is the equivalent to the Translate command from the Tools menu.
It translates documents as specified in the [Translate] section of the job file.

TranslationMemory

This class provides access to the Translation Memory methods and properties. It
contains the methods AnalyzeFiles, CleanupFiles, Close, Concordance,
Open, Search and TranslateFiles. It has the properties Filename, HitCount,
SourcelLanguage and TargetLanguage. It contains the class TranslationUnit.

TranslationUnit

This class provides access to an individual translation unit. It has the methods
Next, Previous and Save. Its properties are ChangeDate, ChangeUser,
CreationDate, CreationUser, Score, Source, Target, TermCount,
UsageCounter and UsedDate. It contains the class Term.

TW4Win "TW4Win is the class module for the Translator’s Workbench classes. Its methods
are Application and Quit. Its property is PinOnTop. It contains the class
TranslationMemory.

UsageCounter This property returns the number of times a translation unit has been used.

UsedDate This property returns the date of the last use of the translation unit.

The following section contains detailed descriptions of all Translator’'s Workbench API classes,
methods and properties.

AnalyzeFiles

Description: The AnalyzeFiles method is the equivalent to the Analyze command from the
Tools menu. It analyzes documents as specified in the [Analyze] section of the
job file.

Syntax: Qbj ect. Transl ati onMenory. Anal yzeFi | es(JobFi | e)

Type: Method

Element of TW4Win. Translation Memory

On Error: The method causes an error event if the job file is not found or if an error occurs
during the processing of the job file.

Parameter JobFile

Type String (obligatory)

Explanation The string must contain the full path and name of the job file.

Example: "Anal yzes files according to the commands in jobs.txt
Wor kbench. Transl ati onMenory. Anal yzeFi |l es("d: \tenp\jobs.txt")

Application

Description: TW4Win.Application starts Translator’s Workbench. At startup the settings in
the "My Computer\HKEY_CURRENT_USER\Software \'TRADOS\
"TW4Win" branch are read from the registry. This branch contains general
Workbench user settings (but not the Translation Memory setup).

Syntax: TWIW n. Appl i cati on

Type: Method

Element of TW4Win

Result:

The function assigns the connection to Translator’s Workbench to an object.

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

Application Programming Interface Reference

On Error: If a method fails it produces an error event. Some of these events are specific to
Workbench. In Visual Basic for Applications these events are influencing the
Error Object "Err". The properties of Err.Number and the Err.Description are
changed. It is recommended that the information in the Err-Object is used for
error messages.
Example: Di m Wor kbench As Obj ect
Set Workbench = Createhj ect ("TWIW n. Appl i cation")
ChangeDate
Description: ~ The ChangeDate property returns the date of the last change to the current
translation unit as specified in the system field with the same name.
Syntax: oj ect. Transl ati onMenory. Transl ati onUni t. ChangeDat e
Type: Property
Element of TW4Win. TranslationMemory. TranslationUnit
On Error: If the system field does not exist, the property returns the empty string.
Return Value Date
Type String
Explanation The format of the returned string is the same as specified in the Short Date
Style box of the Date tab in Regional Settings (Windows Control Panel).
Example: "Read the date of the |last change of the TU into a variable
ChD$ = Workbench. Transl ati onMenory. Transl ati onUni t. ChangeDat e
ChangeUser
Description: ~ This property returns the ID of the user who last changed the current
translation unit.
Syntax: oj ect. Transl ati onMenory. Transl ati onUni t. ChangeUser
Type: Property
Element of TW4Win. TranslationMemory. TranslationUnit
On Error: If the system field does not exist, the property returns an empty string.
Return Value UserlD
Type String
Explanation The property returns the ID of the user who last changed the translation unit.
Example: "Read the I D of the user who | ast changed the TU
ChU$ = Workbench. Transl ati onMenory. Tr ansl ati onUni t . ChangeUser
CleanupFiles
Description: ~ This method is the equivalent to the Clean Up command from the Tools menu.
It cleans up translated files as specified in the [Cleanup] section of the job file.
Syntax: oj ect. Transl ati onMenory. Cl eanupFi | es(JobFil e)
Type: Method

Element of

On Error:

TW4Win. Translation Memory

This method causes an error event it the job file is not found or if an error occurs

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

API Instructions: Reference List

during the processing of the job file.

Parameter JobFile
Type String (obligatory)
Explanation "This string must contain the full path and name of the job file.
Example: "clean up translated files as specified in the job file
Wor kbench. Transl ati onMenory. G eanupFi | es("d: \tenp\job.txt")
Close
Description: ~ This method is the equivalent to the Close command from the File menu. It
closes the current Translation Memory.
Syntax: Qbj ect. Transl ati onMenory. d ose
Type: Method
Element of TW4Win. Translation Memory
Result: After the execution of this method the last opened Translation Memory is
closed. The application Workbench is not terminated. If the TM is closed the
property Filename returns an empty string.
On Error: "This method causes an error event if the Translation Memory cannot be closed.
Example: "Closes the TMthat Workbench refers to
Wor kbench. Transl ati onMenory. C ose
Concordance
Description: ~ This method is the equivalent to the Concordance command from the Tools
menu. [t starts a Concordance search for the text specified in the parameter.
The search is performed with the settings specified in the Concordance tab of
the Translation Memory Options dialog.
Syntax: oj ect. Transl ati onMenory. Concor dance(Text)
Type: Method
Element of TW4Win. Translation Memory
Result: If the Concordance search is successful an Concordance window is opened in
which the matching translation units are displayed. If no matching translation
units are found the method has no result.
On Error: "This function causes an exception if no Translation Memory is open.
Parameter Text
Type String (obligatory)
Explanation The content of the parameter specifies the string to search for.
Example: "Performs a Concordance search for "term nol ogy recognition”
Obj ect . Transl ati onMenory. Concor dance("t ermi nol ogy recognition")
CreationDate
Description: ~ This property returns the date on which the current translation unit was created.
Syntax: oj ect. Transl ati onMenory. Transl ati onUnit. Creati onDate
Type: Property

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

B-14 Application Programming Interface Reference
Element of TW4Win. TranslationMemory. TranslationUnit
On Error: If the system field does not exist, the property returns an empty string.
Return Value Date
Type String
Explanation The format of the returned string is the same as specified in the Short Date
Style box of the Date tab in Regional Settings (Windows Control Panel).
Example: "Read the date when the TU was created into a variable
CrD$ = Workbench. Transl ati onMenory. Transl ati onUni t. Creati onDat e
CreationUser
Description: "This property returns the ID of the user who created the current translation
unit.
Syntax: oj ect. Transl ati onMenory. Transl ati onUnit. Creati onUser
Type: Property
Element of TW4Win. TranslationMemory. TranslationUnit
On Error: If the system field does not exist, the property returns an empty string.
Return Value UserlD
Type String
Explanation "This property returns the ID of the user who created the translation unit.
Example: ‘reads the ID of the user who created the TU into a variable
CrU$ = Workbench. Transl ati onMenory. Tr ansl ati onUni t . ChangeUser
Filename
Description: ~ This property returns the filename of the current Translation Memory.
Syntax: Cbj ect. Transl ati onMenory. Fi | enane
Type: Property
Element of TW4Win. Translation Memory
Result: This property returns the path and the name of the current Translation Memory
as a string. The string is the same as the file name used in the Open method. If
no Translation Memory is open the property returns an empty string.
Return Value Nane
Type String
Explanation The file name is only given with the extension . t Mwif this was also specified in
the Open method.
Example: "assign path and filenane of current TMto variable TWvhane$
Thname$ = Wor kbench. Transl ati onMenory. Fi | enanme
Found
Description: ~ This property returns a term in the source language as found in the terminology

database. The property only returns one term at a time. If multiple terms were
found in a segment the Next or Previous methods can be used to access the
other terms.

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

API Instructions: Reference List

B-15

Syntax:
Type:

Element of

oj ect. Transl ati onMenory. Transl ati onUnit. Term Found
Property
TW4Win. TranslationMemory. TranslationUnit. Term

On Error: If terminology recognition is inactive or MultiTerm is not running or no
matching term is found the property returns an empty string.

Return Value Term

Type String

Explanation The return value is the term as found in the terminology database. Since
terminology recognition operates with fuzzy-matching algorithms the result may
be different from the term in the document.

Example: "assign the found termto a variable
Tern$ = Workbench. Transl ati onMenory. Transl ati onUni t. Ter m Found

HitCount

Description: ~ This property returns the number of matching translation units found in the last
search.

Syntax: Cbj ect. Transl ati onMenory. Hi t Count

Type: Property

Element of

Result:

Return Value
Type
Explanation

Example:

TW4Win. Translation Memory

The number of matches may not exceed the maximum number of hits defined
in Translation Memory Options. If no match was found the property returns 0.

Nunber
Long
The return value is the number of found translation units after a search.

"assign nunber of found natches to variable Hits.
H ts = Wbrkbench. Transl ati onMenory. Hi t Count

Next (Translation Unit Class)

Description:

Syntax:
Type:
Element of
Return Value
Type

Explanation

Example:

This method scrolls to the next matching translation unit. When the last
translation unit is reached and the method is called again it still returns the last
matching translation unit.

oj ect. Transl ati onMenory. Transl ati onUni t . Next
Method

TW4Win. TranslationMemory. TranslationUnit

Fl ag

Boolean

If the last match has been found and the method is called again it returns False.
Otherwise it returns True.

"scroll to the next match
Wor kbench. Transl ati onMenory. Transl ati onUni t. Next

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

Application Programming Interface Reference

Next (Term Class)

Description:

Syntax:
Type:

Element of

"This method is the equivalent to the Get Next Term command from the Trados
menu. It scrolls in a ring to the next found term. That means if the last term is
reached and the command is used again it returns to the first term.

Obj ect. Transl ati onMenory. Transl ati onUni t. Ter m Next
Method
TW4Win. TranslationMemory. TranslationUnit. Term

Example: "scroll to the next term

Wor kbench. Transl ati onMenory. Transl ati onUni t. Ter m Next
Open

Description: This method is the equivalent to the Open command from the File menu. It
opens the Translation Memory specified in the Filename parameter.

Syntax: Cbj ect. Transl ati onMenory. Qpen Fi | ename, Userl D, [Password],

[Mode]

Type: Method

Element of TW4Win. Translation Memory

Result: The Translation Memory is opened in the access mode defined in the Access
Rights tab in the Translation Memory setup. If no access rights are defined the
Translation Memory is opened in exclusive mode.

On Error: This method causes an error event if the Translation Memory cannot be
opened. If an invalid password is given the method causes an error event. If
passwords are defined in the Translation Memory setup but no password is
given the method causes an error event.

Parameter Fi | enane

Type String (obligatory)

Explanation The filename must contain the path and the name of the Translation Memory.
The filename is not case sensitive. The extension .tmw may be omitted.

Parameter User | D

Type String (obligatory)

Explanation The UserID must contain the ID of the user. It is not case sensitive. If the
UserlID does not exist it is created.

Parameter Passwor d

Type String (optional)

Explanation If passwords have been defined in the Translation Memory setup this parameter
must be given. The password is case sensitive.

Parameter Mbde

Type String (optional)

Explanation The mode may be one of the following values: - r (Read); - w (Read/Write); - m
(Maintenance); - X (Exclusive).

Example: "Qpen the TM deno.tmw with userl D FLAGVAN and password AHEAD

Wor kbench. Transl ati onMenory. Qpen "d: \tenp\deno. t mv', "FLAGVAN',
" AHEAD"'

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

API Instructions: Reference List

PinOnTop

Description:

Syntax:
Type:
Element of
Return Value
Type

Explanation

Example:

"This property is the equivalent to the Pin on Top command from the View
menu. If set to "T'rue" the Translator’'s Workbench is the topmost window. If set
to "False" it may be covered by other windows.

Obj ect . Pi nOnTop = {True; Fal se}
Property

TW4Win

Fl ag

Boolean

If the Workbench window is the topmost window it returns the status "T'rue". If
it is not the topmost window it returns the status "False".

" Make Wor kbench the topnobst w ndow
Wor kbench. Pi nOnTop = True

Previous (Translation Unit Class)

Description:

Syntax:
Type:
Element of
Return Value
Type

Explanation

Example:

This method scrolls to the previous matching translation unit. When the first
translation unit is reached but the method is called again it shows the first
matching translation unit.

Obj ect. Transl ati onMenory. Transl ati onUni t. Previ ous
Method

TW4Win. TranslationMemory. TranslationUnit

Fl ag

Boolean

If the first match has been found but the method is called it returns False.
Otherwise the method returns T'rue.

"scroll to the previous match
Wor kbench. Transl ati onMenory. Transl ati onUni t. Previ ous

Previous (Term Class)

Description:

Syntax:
Type:
Element of

Example:

T'his method is the equivalent to the Get Previous Term command from the
"T'rados menu. It scrolls in a ring to the previous found term. That means if the
first term is reached and the command is used again the last term is found.

Obj ect. Transl ati onMenory. Transl ati onUni t. Term Previ ous
Method
TW4Win. TranslationMemory. TranslationUnit. Term

"scroll to the previous term
Wor kbench. Transl ati onMenory. Transl ati onUni t. Term Pr evi ous

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

B-18

Application Programming Interface Reference

Quit
Description: ~ This method is the equivalent to Exit command from the File menu. It closes a
running Translator’s Workbench
Syntax: Cbj ect. Qui t
Type: Method
Element of TW4Win
Result: "This method closes the instance of Workbench the object refers to and releases
the connection between the object and Workbench. The execution of this
method is always successful. Upon exiting the Workbench its settings are
written into the registry in the key
"My Computer\HKEY_CURRENT_USER\Software '\TRADOS\'TW4Win".
Example: "Exit Workbench
Wor kbench. Qui t
Save
Description: ~ This method is the equivalent to the Set command from the Trados menu. It
writes a new translation to the current translation unit.
Syntax: Qbj ect . Transl ati onMenory. Transl ati onUni t. Save(Tr ansl ati on)
Type: Method
Element of TW4Win. TranslationMemory. TranslationUnit
Result: If the previous search did not result in a match a new translation unit is created.
It contains in the source segment the string from the last search and in the target
segment the string given in the parameter. System fields are created and
initialized. If the previous search brought up a match the contents of the target
segment is overwritten with the string given in the parameter. System fields are
updated according to the settings in the Translation Memory Options.
On Error: If no Translation Memory or translation unit is open or the user has no write
permission the method causes an error event.
Parameter Transl ation
Type String (obligatory)
Explanation The content of the string is written into the Translation Memory as new
translation.
Example: ’save new translation in current TU
Wor kbench. Transl ati onMenory. Transl ati onUni t. Save ("Was genau
ist ein Translation Menory (TM?")
Score
Description: ~ This property returns the match value of the current translation unit.
Syntax: Qbj ect . Transl ati onMenory. Transl ati onUni t. Score
Type: Property

Element of

Return Value

TW4Win. TranslationMemory. TranslationUnit
Mat chVal ue

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

API Instructions: Reference List

B-19

Type Long

Explanation The return value is the match value of the current translation unit. If no
matching translation unit was found the property returns 0. In any other case it
will not fall below the minimum match value from the Translation Memory
settings.

Example: ‘assign current match value to a variable
mv = Wor kbench. Transl ati onMenory. Transl ati onUni t. Score

Search

Description: ~ This method is the equivalent to the OpenGet command. It transfers the string
given in the parameter to the Translation Memory and searches for matching
translation units.

Syntax: oj ect. Transl ati onMenory. Sear ch(Sour ceSenct ence)

Type: Method

Element of

Result:

On Error:
Parameter
Type
Explanation

Example:

TW4Win. Translation Memory

If the search was successful all values accessible through

TW4Win. TranslationMemory. TranslationUnit properties will be initialized. If
no matching translation unit was found these values remain empty. A new
translation can be assigned with the Save method.

If no Translation Memory is open the method causes an error event.

Sour ceSent ence

String (obligatory)

The string contains the sentence that is searched in the Translation Memory.

"Performa search for the string between the doubl e quotes
Wor kbench. Transl ati onMenory. Search ("Wat exactly is a
Transl ati on Menory (TM ?")

Source (Translation Unit Class)

Description:
Syntax:
Type:
Element of
On Error:
Return Value
Type

Explanation

Example:

"This property returns the source sentence of the current translation unit.
oj ect. Transl ati onMenory. Transl ati onUni t. Sour ce

Property

TW4Win. TranslationMemory. TranslationUnit

If no match was found the property returns the empty string.

Sour ceText

String

The return value is the content of the source segment of the current translation
unit.

"assign the source sentence to a variable
Src$ = Workbench. Transl ati onMenory. Transl ati onUni t. Sour ce

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

B-20

Application Programming Interface Reference

Source (Term Class)

Description:

Syntax:
Type:

Element of

"This property returns the found term from the current segment. That means the
term is displayed as it occurred in the document to translate. Since terminology
recognition uses fuzzy searching the source term may be different from the
found term.

Obj ect . Transl ati onMenory. Transl ati onUni t. Ter m Sour ce
Property

TW4Win. TranslationMemory. TranslationUnit. Term

On Error: If no term was found the property returns the empty string.
Return Value Term
Type String
Explanation The return value is the source term from the terminology database as a string.
Example: "assign the termfromthe segnent to a variable
STer n$=Wor kbench. Tr ansl ati onMenory. Transl ati onUni t. Ter m Sour ce
SourceLanguage
Description: ~ This property returns the ID number of the source language locale. It can be
used for determining the source language of the current Translation Memory.
Syntax: Qbj ect . Transl ati onMenory. Sour ceLanguage
Type: Property

Element of
Return Value
Type

Explanation

Example:

TW4Win. Translation Memory
Local el D
Long

The return value is a number of the locale that is used for the source language.
"T'his value may be used for comparing the source language of the document
with the settings in the Translation Memory.

"write nunber of source |anguage |ocale into a variable
SrcLng = Workbench. Transl ati onMenory. Sour ceLanguage

Target (Translation Unit Class)

Description:
Syntax:
Type:
Element of
On Error:
Return Value
Type

Explanation

Example:

"This property returns the translation from the current translation unit.
Obj ect. Transl ati onMenory. Transl ati onUni t. Tar get

Property

TW4Win. TranslationMemory. TranslationUnit

If no match was found the function returns the empty string.

Tar get Text

String

This property returns the content of the target segment of the current
translation unit. If no match was found the property returns the empty string.

"assign the translation to a variable
Trg$ = Workbench. Transl ati onMenory. Transl ati onUni t. Tar get

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

API Instructions: Reference List

Target (Term Class)

Description:

Syntax:
Type:

Element of

This method is the equivalent to the Get Current Term command from the
T'rados menu. It returns the translation of a found term.

Obj ect. Transl ati onMenory. Transl ati onUni t. Term Tar get
Method
TW4Win. TranslationMemory. TranslationUnit. Term

Return Value Term

Type String

Explanation The return value is the content of the index field which is set as target language
in MultiTerm. If no term was found the function returns the empty string.

Example: "assign the translation of a termto a variable
TTer n6=Wor kbench. Transl ati onMenory. Transl ati onUni t. Ter m Tar get

TargetLanguage

Description: This property returns the number of the target language locale. It can be used
for determining the target language of the current Translation Memory.

Syntax: Cbj ect. Transl ati onMenory. Tar get Language

Type: Property

Element of

TW4Win. Translation Memory

Return Value Local el D
Type Long
Explanation This property returns the number of the locale that is used for the target
language. This value may be used for comparing the target language of the
document with the settings in the Translation Memory.
Example: "write the nunber of the target |anguage |ocale into a variable
TrgLng = Workbench. Transl ati onMenory. Tar get Language
Term
Description: The class provides access to the terminology recognition. Its methods are Next
and Previous. It has the properties Found, Source and Target.
Syntax: TWAW n. Transl ati onMenory. Transl ati onUni t. Term
Type: Class
Element of TW4Win. TranslationMemory. TranslationUnit
TermCount

Description:

Syntax:

"This property returns the number of terms in the current sentence that were
found by terminology recognition.

oj ect. Transl ati onMenory. Transl ati onUni t. Ter mCount

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

B-22 Application Programming Interface Reference
Type: Property
Element of TW4Win. TranslationMemory. TranslationUnit
Return Value Nunber Of Mat ches
Type Long
Explanation The property returns the number of found terms in a segment. If no terms were
found or terminology recognition is deactivated the property returns 0.
Example: ‘assign the nunmber of found terns to a variable
Ternms = Workbench. Transl ati onMenory. Transl ati onUni t. Ter nCount
TranslateFiles
Description: ~ This method is the equivalent to the Translate command from the Tools menu.
It translates documents as specified in the [Translate] section of the job file.
Syntax: oj ect. Transl ati onMenory. Transl at eFi | es(JobFi | e)
Type: Method
Element of TW4Win. Translation Memory
On Error: This method causes an error event if the job file is not found or if an error occurs
during the processing of the job file.
Parameter JobFile
Type String (obligatory)
Explanation The string must contain the full path and name of the job file.
Example: "Transl ates files according to the comands in jobs.txt
Wor kbench. Transl ati onMenory. Transl ateFil es("d:\tenp\jobs. txt")
TranslationMemory
Description: ~ The class provides access to the Translation Memory methods and properties. It
contains the methods AnalyzeFiles, CleanupFiles, Close, Concordance, Open,
Search and TranslateFiles. It has the properties Filename, HitCount,
SourcelLanguage and TargetLanguage. It contains the class TranslationUnit.
Syntax: TWIW n. Tr ansl ati onMenory
Type: Class
Element of TW4Win
TranslationUnit

Description:

Syntax:
Type:

Element of

The class provides access to an individual translation unit. It has the methods
Next, Previous and Save. Its properties are ChangeDate, ChangeUser,
CreationDate, CreationUser, Score, Source, Target, TermCount, UsageCounter
and UsedDate. It contains the class Term.

TWIW n. Transl ati onMenory. Transl ati onUni t
Class
TW4Win. Translation Memory

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

API Instructions: Reference List

TW4Win
Description: TW4Win is the class module for the Translator’s Workbench classes. Its
methods are Application and Quit. Its property is PinOnTop. It contains the class
TranslationMemory.
Syntax: TWIW n
Type: Class
UsageCounter
Description: ~ This property returns the number of times a translation unit has been used.
Syntax: oj ect. Transl ati onMenory. Transl ati onUni t. UsageCount er
Type: Property
Element of TW4Win. TranslationMemory. TranslationUnit
On Error: If the usage counter is not defined, the translation unit does not exist or has not
been re-used, the property returns 0.
Return Value Counter
Type Long
Explanation The return value is number of times a translation unit has been re-used.
Example: "assign the content of the usage counter to a variable
UsC = Workbench. Transl ati onMenory. Transl ati onUni t. UsageCount er
UsedDate
Description: ~ This property returns the date of the last use of the translation unit.
Syntax: oj ect. Transl ati onMenory. Transl ati onUnit. UsedDat e
Type: Property

Element of
On Error:
Return Value
Type

Explanation

Example:

TW4Win. TranslationMemory. TranslationUnit

If the system field does not exist, the property returns the empty string.
Dat e

String

The property returns the date when the TU was last used as a string in the
format dd.mm.yy, hh:mm

"read the date of the last use of the TUinto a variable
UsD$ = Wor kbench. Transl ati onMenory. Transl ati onUni t. ChangeDat e

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

Application Programming Interface Reference

The Job File

General Remarks

Jobs

The Workbench offers three so-called “batch functions”:

1. Analyze
2. 'Translate

3. Cleanup

A detailed description of these functions can be found in the Workbench User’s Guide. At the
time of printing the corresponding chapter is Chapter 9 “Document Analysis, Translation and
Cleanup” One of the main advantages of the API is the ability to start these three commands
from another program. The corresponding methods are

1. AnalyzeFiles
2. TranslateFiles

3. CleanupFiles

which we will call “batch methods”. As explained in the User’s Guide there are parameters that
govern the execution of these commands and thereby influence the result of the process.
Consequently it must be possible to control the execution of the batch methods. This is
achieved by the so-called “job file” which is a control file that determines what documents
should be processed and what parameters are used. In this section it will be explained how the
job file must be written and what commands are available to select files and set parameters.

The job file must be a text only file. Every command must be given in a separate line. L.eading
white spaces at the beginning of a line are ignored. Comment lines must begin with an
apostrophe (*).

The job file can consist of one or more jobs. A job is a set of instructions that either analyze or
translate or cleanup one or more files. Each job needs a separate section. If one of the batch
methods is used it searches for the corresponding section in the job file that is given as parameter
of the method. It is possible to create a job file that contains the settings for all batch methods in
one file or to create separate job files for each method. The following figure shows the relation
between the batch methods and the corresponding section in the job file.

Relation between method and job file section

Program Code T?iglo?;"e
Anal yzeFi | es(j ob. txt) » [An.:a\l yze]
Transl ateFil es(j ob. txt) > [Tr.:a\nsl ate]
C eanupFi | es(j ob. txt) » [d feanup]

Figure B-7: Relation between methods and job file

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

The Job File B-25

At the same time it is possible to use a separate job file for each method or different job files for
one method if you want to process multiple files with variable settings.

Relation between methods and multiple job files

Program Code Job File for analysis
anal yze. t xt

[

Anal yzeFi | es(anal yze. t xt) —

Transl ateFiles(translatel. txt)
Transl ateFil es(transl ate2. txt)
Transl ateFil es(transl ate3. txt)

Multiple job files for translation
translate[1- 3] . txt
Cl eanupFi | es(cl eanup. t xt) ’l

w Job File for cleanup

cl eanup. t xt

[O eanup]

Figure B-8: Relation between methods and multiple job files

Job: Analyze

The Analyze section in the job file consists of sub-sections which are called “tasks”. The number
of tasks must be given with the Tasks command. Each task is numbered consecutively and the
subsections for the tasks are marked with the section marker Task n. In the analyze section the
following tasks are available:

* Analyze
* ExportUnknown
* ExportFrequent

e CreateProjectTM

The Analyze task is obligatory and it must be the first task. The other tasks are optional and may
be carried out in any order. Within the Analyze section the user must specify the number of
tasks. Since the Analyze task is required at least one task must be given. If the user wants to
record the analysis result in a file this can be achieved with the LogFile command. The
beginning of a typical analysis section would look like this:

"This section defines the settings for analysis
[Anal yze]

" The whol e anal ysis process consits of 4 tasks
Tasks=4

"The analysis results are recorded in a log file
LogFi | e=D: \ Tr ados\ TWAW n\ sanpl es\test. | og

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

B-26 Application Programming Interface Reference

"This section defines the settings for the first task
[Task1]

"The first task is to analyze a set of files
Task=Anal yze

Analyze Task

As pointed out in the preceding section the Analyze task is obligatory and must be the first task.
If desired the user can advise the Workbench to use the Translation Memory from the previous
analysis if multiple files are treated. This can be achieved with the UseTMFromPreviousAnalysis
command. Moreover it must be declared how many files are to be analyzed and what the paths
and names of the files are. The appropriate commands are Files and File n. Files sets the total
number of files to process. The files must be specified with the File n command where every file
has its own number. Here the full path and file name must be set. It is possible to access files
remotely over a network. In this case the path can contain a mounted network drive or a
universal naming convention name (UNC path). A typical Analyze task would look like this:

"This section defines the settings for the first task
[Task1]

"The first task is to analyze a set of files
Task=Anal yze

"Do not use the TMfromthe previous anal ysis
UseTMr onPr evi ousAnal ysi s=0

"Anal yze two files

Fil es=2

"Here are the file nanes

Fil el=C:\ Tr ados\ TWAW n\ sanpl es\ deno97.rtf

"The second file is on a machi ne naned SPOCK
Fi | e2=\\ SPOCK\ Tr ados\ TWIW n\ sanpl es\test97.rtf

ExportUnknown Task

The Translator’s Workbench offers the possibility to export all sentences that are unknown to
the Translation Memory into a file. This feature can be accessed through the ExportUnknown
Task. It must be coded as a sub-section of the Analyze section. After the task command has been
executed the user can define the match value which determines whether a segment is exported
or not with the MaxMatch command. The system compares every sentence from the document
to the Translation Memory. All sentences that have a match value identical or below the given
match value are written to the export file. The path and the name of this file are given with the
File command. If the format of the export file should be another than Workbench 2 exchange
format the user must specify this with the FileType command. This is necessary if the unknown
text should be translated with a machine translation system like Logos or Systran, e.g. A sample
for a task to export unknown segments is given below.

"This section defines the settings for the second task

[Task2]

"The task is to export all unknown sentences

Task=Expor t Unknown

" Consider all sentences as unknown w a match val ue of 95% or | ower
MaxMat ch=95

"File to which all unknown sentences are exported

Fi | e=C:\ Trados\ TWAW n\ sanpl es\ unknown. t xt

"Create a file in Wrkbench 2 exchange fornmat

Fil eType=1

ExportFrequent Task

Like exporting all unknown sentences it is also possible to write all frequent segments into a file.
"The appropriate task is ExportFrequent. Per default all sentences that occur five or more times
are exported. If the user wants to set a different value he must use the Occurrences command.
Similar to the ExportUnknown command the name of the output file must be specified. If the
user requires another output format than Workbench 2 format he must use the FileType
command. A sample for a task to export frequent sentences is given below.

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

The Job File

B-27

Job: Translate

Job: Cleanup

"This section defines the settings for the third task
[Task3]

"The task is to export the frequent segnments
Task=Export Fr equent

"Export all sentences that occur tw ce or nore
Cccurrences=2

"File to which the frequent segnents are exported

Fi | e=C:\ Trados\ TWAW n\ sanpl es\ frequent . t xt

"Create a file in Wrkbench 2 exchange fornmat

Fil eType=1

CreateProjectTM Task

For distributing only the relevant part of a Translation Memory it is possible to create a Project
'I'M. This is achieved with the CreateProjectTM command. The only instruction that is needed
in addition is the specification of the path and the name of the Project Translation Memory. The
output is a T'M in Workbench 2 format with all index files. A sample task is given below.

"This section defines the settings for the fourth task
[Task4]

"The task is to create a project Translation Menory
Task=Cr eat eProj ect TM

"File name of the project T™M

Fi | e=C:\ Trados\ TWAW n\ sanpl es\ proj ect. t nw

The 'Translator’s Workbench allows the automatic pre-translation of documents. Known
sentences are retrieved from the Translation Memory and pasted into the document. This is
particularly useful when a large portion of the text is already known to the Translation Memory.
This function can be called automatically with the TranslateFiles method which executes the
commands in the [Translate] section of the job file. It contains commands which are equivalent
to the settings that are available in the Translate Files dialog.

If the user wishes to record the results of the translation process in a log file the path and name
of this file must be given. Per default the Workbench only translates exact matches. If sentences
with a lower match value shall be translated the minimum match value must be set with the
MinMatch command. Next it should specified whether the system should also search for
terminology with the TranslateTerms command. Similar to the [Analyze] section the user must
define the number of files to process and the path and names of the files. Below a typical
[Translate] section is given as an example:

"This section defines the setting for automatic pre-translation
[Transl at e]

"Record the results in alog file

LogFile = C \Trados\ TWAW n\ x| ate. | og

"Transl ate all sentences with a match val ue of 95% or better
M nMat ch=95

"Do not translate terns autonatically

Transl at eTer ns=0

"Process two files

Fil es=2

"Here are the file nanes

Fil el=C:\ Tr ados\ TWAW n\ denp97. rt f

"The second file is on a nachi ne naned SPOCK

Fi | e2=\\ SPOCK\ Tr ados\ TWAW n\ sanpl es\test97.rtf

"The third batch function is the clean up. This process is started with the CleanupFiles method.
The commands in the [Cleanup] section of the job file are corresponding to the settings that are
available in the Clean up Files dialog.

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

B-28 Application Programming Interface Reference

Like in all the other sections the user may specify a log file. Per default neither the Translation
Memory nor the document are updated if diverging translations are detected during the clean up
process. This can be changed with the WhenChanged command. Finally only the list of files
which should be processed must be specified. A typical [Cleanup] section may look like this:

"This section contains the settings for the clean-up
[O eanup]

"Record the results in a file

LogFile = C \ Trados\ TWAW n\ cl eanup. | og
"Update the TMif translati ons have changed
WhenChanged=2

"Process two files

Fil es=2

"Here are the file nanes

Fil e1=C:\ Tr ados\ TWAW n\ denp97. rtf

"The next file is on a machi ne named SPOCK
Fi | e2=\\ SPOCK\ Tr ados\ TWAW n\ sanpl e\test97. rtf

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

Job File Commands: Reference Lists

Job File Commands: Reference Lists

All command that are available for programming the Job File are listed here in alphabetic order.

Concept

Description

Analyze

In this section the user defines which files are to be analyzed and
what settings control the analysis process. An analysis consits of one
or more tasks. The number of tasks must be given with the
command Tasks. For each task a separate section must be defined.
The first task must be an Analyze task. Other tasks may be the
export of unknown sentences or the creation of a project
T'ranslation Memory.

Cleanup

This section is the equivalent to the Clean-Up command from the
Tools menu. It contains the settings for the clean up process and
the list of files to clean.

File

The command specifies the path and the name of an output file.
Per default the format of the output file is exchange format of
T'ranslator’s Workbench 2. The output format can be changed with
the FileType command.

The command defines the position of the file in the queue. The
files must be numbered consecutively and are processed in that
order.

Files

The command specifies the number of files to process in a task or a
section.

FileType

The command can be used for setting the format of an output file.
If the command is not used all output files are written in the
exchange format of Translator’s Workbench 2.

LogFile

The results of analyzing, translating or cleaning up may be recorded
in a log file. If this is desired the name of the file must be specified
by this command.

MaxMatch

The command is the equivalent to the "% or lower Match Value"
from the Analysis Results group box of the Analyze Files dialog. It
defines the threshold at which an unknown sentence must be
exported. If the match value of a sentence is below the threshold it
will be written to the export file. If the command is not given in the
job file then the default value 85 will be used.

MinMatch

The command is the equivalent to the Match Value setting in the
Translate File dialog. The value defines how much the minimal
match value must be so that a sentence is translated automatically.
If the command is not used only exact matches are translated.

Occurrences

The command is the equivalent to the Occurrence setting in the
Analysis Results group box of the Analyze Files dialog. It specifies
the threshold at which frequent segments shall be written to an
export file. If the command is not used all sentences occurring 5
times or more are exported.

SegmentUnknown

The command is the equivalent to the Segment Unknown
Sentences check box in the Translate Files dialog. It determines
whether untranslated sentences shall be segmented or not. If the
command is omitted unknown sentences are not segmented.

Task

The command specifies the action to perform in the analyze
section.

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

B-30

Application Programming Interface Reference

Concept

Description

Task n

Every task has to be marked as separate section. This command
marks the beginning of new task. The tasks must be numbered
consecutively in ascending order and appear in that order in the job
file. A task itself consists of several commands which describe each
step of the task.

Tasks

The command sets the number of tasks to process when analyzing
documents against a Translation Memory.

Translate

This section is the equivalent to the Translate command from the
Tools menu. It contains the settings for the batch translation
process and the list of files to translate.

Translate Terms

The command is the equivalent to the Translate Terms group box
in the Translate Files dialog. It specifies whether terminology
recognition shall be used at automatic translation and where to put
found terms in the translated file. If the command is omitted the
terminology recognition is inactive. If no MultiTerm is running
then the terminology recognition is omitted regardless of the
settings in the command.

UseTMFromPreviousAnalysis

This command defines whether the Workbench shall use the
Translation Memory from the previous analysis or not when
analyzing multiple files. If the command is not used then the TM
from the previous analysis is not used.

WhenChanged

The command is the equivalent to the Update Changed
Translations group box in the Translate Files dialog. It defines
whether the Workbench should check if a translation has been
changed since the last automatic translation and if so whether the
document or the Translation Memory shall be updated. If the
command is not used the check for changed translations is omitted.

WhenChanged

The command is the equivalent to the Changed Translations group
box in the Cleanup Files dialog. It defines whether the Workbench
should check if a translations in the document have been changed
since the last translation and if so what action shall be taken. If the
command is not used the check for changed translations is omitted.

The following section contains a complete description of all Job File commands:

Analyze

Description: In this section the user defines which files are to be analyzed and what settings
control the analysis process. An analysis consist of one or more tasks. The
number of tasks must be given with the command Tasks. For each task a
separate section must be defined. The first task must be an Analyze task. Other
tasks may be the export of unknown sentences or the creation of a project
T'ranslation Memory.

Syntax: [Anal yze]

Type: Section (obligatory)

Element of Job File

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

Job File Commands: Reference Lists

Example: [Anal yze]
Tasks=t
[Task1]

Task = Anal yze
Cleanup

Description: ~ This section is the equivalent to the Clean-Up command from the Tools menu.
It contains the settings for the clean up process and the list of files to clean.

Syntax: [O eanup]

Type: Section

Element of Job File

File

Description: The command specifies the path and the name of an output file. Per default the
format of the output file is exchange format of Translator’s Workbench 2. The
output format can be changed with the FileType command.

Syntax: Fi | e=Fi | enane

Type: Command (obligatory)

Element of Job File [Analyze] Task=ExportUnknown, Job File [Analyze]
Task=ExportFrequent, Job File [Analyze] Task=CreateProject TM

On Error: If the access to the directory or the file is denied an error message is written to
the log file. The processing of the job file continues.

Parameter Fi | enane

Type String (obligatory)

Explanation The filename must contain the full path and the full name including the
extension of the output file. If the file already exists it is overwritten without
warning. UNC paths are supported.

Example: "wite the results of the current task to the file specified
Fi | e=d: \t emp\ unknown. t xt

File n

Description: The command defines the position of the file in the queue. The files must be
numbered consecutively and are processed in that order.

Syntax: Fi | en=Fi | ename

Type: Command (obligatory)

Element of Job File [Analyze] Task=Analyze, Job File [Translate], Job File [Cleanup]

On Error: If the file does not exist or the access to it is denied an error message is written
to the log file. The processing of the job file continues.

Parameter Fi | enane

Type String (obligatory)

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

B-32 Application Programming Interface Reference
Explanation The filename must contain the full path and name of the file. UNC paths are
supported.
Example: "first file to process is denp.doc
Fil el=D:\t enp\ deno. doc
Files
Description: The command specifies the number of files to process in a task or a section.
Syntax: Fil es=n
Type: Command (obligatory)
Element of Job File
On Error: If the number of files is smaller than the list of files only the given number of
files is processed. If the number of files is 0 or larger than the number of files in
the list an exception error occurs.
Parameter Nurmber
Type Long (obligatory)
Explanation The parameter specifies the number of files to process in a task or a section.
Example: "process two files
Fil es=2
FileType
Description: The function can be used for setting the format of an output file. If the function
is not used all output files are written in the exchange format of Translator’s
Workbench 2.
Syntax: Fi | eType=[1- 4]
Type: Command (optional)
Element of Job File [Analyze] Task=ExportUnknown, Job File [Analyze]
Task=ExportFrequent
On Error: If the parameter is out of range then the value 1 is used.
Parameter Nurmber
Type Long (obligatory)
Explanation The file type is defined by numbers from 1 to 4. The following table shows the
numbers and the corresponding output formats:
1 = TW for Windows 2.x (*.txt)
2 = TW for Windows 1.x (¥*.txt)
3 ='TW for DOS (*.asc)
4 = Systran (*.rtf)
5 = Logos (*.sgm)
Example: "create an output file in Wrkbench 2 exchange format
Fi |l eType=1
LogFile
Description: ~ The results of analyzing, translating or cleaning up may be recorded in a log file.

If this is desired the name of the file must be specified by this command.

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

Job File Commands: Reference Lists

B-33

Syntax:
Type:

Element of

LogFi | e=Fi | enane
Command (optional)

Job File

On Error: If the file cannot be created or is in accessible an exception error occurs.

Parameter Fi | ename

Type String (obligatory)

Explanation The filename must contain the full path and the filename of the log file. If the
file already exists the results will be appended to it. UNC paths are supported.

Example: "wite the analysis results to test.log
LogFil e=d: \tenp\test. | og

MaxMatch

Description: The command is the equivalent to the "% or lower Match Value" from the
Analysis Results group box of the Analyze Files dialog. It defines the threshold
at which an unknown sentence must be exported. If the match value of a
sentence is below the threshold it will be written to the export file. If the
command is not given in the job file then the default value 85 will be used.

Syntax: MaxMat ch=n

Type: Command (optional)

Element of Job File [Analyze] Task=ExportUnknown

Parameter Maxi mum mat ch val ue

Type Long (obligatory)

Explanation The parameter defines the threshold at which a sentence is exported as
unknown. If the value is 100 or larger all sentences will be exported as
unknown. If the value is 0 then all sentences with a match value between 30
and 0 will be exported. If the value is negative then no sentence will be
exported. Decimal values are truncated to their integer.

Example: “export all unknown sentences that have a match val ue bel ow 95%
MaxMat ch=95

MinMatch

Description: The function is the equivalent to the match value setting in the Translate File
dialog. The value defines how much the minimal match value must be so that a
sentence is translated automatically. If the function is not used only exact
matches are translated.

Syntax: M nMat ch=n

Type: Command (optional)

Element of Job File [Translate]

Parameter Nurmber

Type Long (obligatory)

Explanation The number defines the match value that a sentence must have in order to be

translated automatically. Setting it to e.g. 95 means that all sentence with a
match value of 95% or higher are translated automatically. Setting the parameter
to higher than 100 or below 0 will translate nothing.

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

B-34 Application Programming Interface Reference

Example: "automatically translate segnents with a match value > 95%

M nMat ch=95
Occurrences

Description: ~ The command is the equivalent to the Occurrence setting in the Analysis
Results group box of the Analyze Files dialog. It specifies the threshold at
which frequent segments shall be written to an export file. If the command is
not used all sentences occurring 5 times or more are exported.

Syntax: Cccurrences=n

Type: Command (optional)

Element of Job File [Analyze] Task=ExportFrequent

Parameter Nurmber

Type Long (obligatory)

Explanation The parameter defines how often a frequent segment must have occurred at last
if it should be exported. If set to 2 all sentences that occurred twice or more will
be written to the output file. If set to 1 all segments will be exported.

Example: ‘export all sentences that occur twice or nore tines
Cccurences=2

SegmentUnknown

Description: The function is the equivalent to the Segment Unknown Sentences check box
in the Translate Files dialog. It determines whether untranslated sentences shall
be segmented or not. If the function is omitted unknown sentences are not
segmented.

Syntax: Segnent Unknown={ 0; 1}

Type: Command (optional)

Element of Job File [Translate]

Parameter Fl ag

Type Boolean (obligatory)

Explanation If set to 0 (=false) unknown sentences are not segmented. If set to 1 (=true)
unknown sentences are segmented.

Example: " segment unknown sentences during batch translation
Segnent Unknown=1

Task

Description: The command specifies the action to perform in the analyze context.

Syntax: Task={ Anal yze; ExportUnknown; ExportFrequent; CreateProjectTM

Type: Command (obligatory)

Element of Job File [Analyze]

Parameter Anal yze

Type Command

Explanation This command marks the section where the analysis is performed.

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

Job File Commands: Reference Lists

B-35

Parameter Export Unknown

Type Command

Explanation This command is the equivalent to the "Export Unknown Segments" button
from the Analyze dialog. When this command is used all unknown segments are
exported into a file.

Parameter Expor t Fr equent

Type Command

Explanation This command is the equivalent to the "Export Frequent Segments" button in
the Analyze dialog. When this command is used all frequent segments are
exported to a file.

Example: "this is an anal yze task
Task=Anal yze

Tasks

Description: The command sets the number of tasks to process when analyzing documents
against a Translation Memory.

Syntax: Tasks=t

Type: Command (obligatory)

Element of Job File [Analyze]

On Error: If the number is larger than the number of task sections then an exception error
occurs. If the number is smaller than the number of task sections then only the
number of tasks specified is executed.

Parameter Nurmber

Type Long (obligatory)

Explanation The parameter sets the number of tasks that make up an analysis.

Example: "the Analyze section contains 3 tasks
Tasks=3

Task n

Description: Every task has to be marked as separate section. This command marks the
beginning of new task. The tasks must be numbered consecutively in ascending
order and appear in that order in the job file. A task itself consists of several
commands which describe each step of the task.

Syntax: [Taskn]

Type: Section (obligatory)

Element of Job File [Analyze]

On Error: If the tasks are not numbered correctly an exception error occurs.

Example: "the first task is to anal yze

[Task1]
Task = Anal yze

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

B-36

Application Programming Interface Reference

Translate
Description: "This section is the equivalent to the Translate command from the Tools menu.
It contains the settings for the batch translation process and the list of files to
translate.
Syntax: [Transl at €]
Type: Section
Element of Job File
TranslateTerms

Description:

Syntax:
Type:
Element of
Parameter
Type

Explanation

Example:

The command is the equivalent to the Translate Terms group box in the
Translate Files dialog. It specifies whether terminology recognition shall be
used at automatic translation and where to put found terms in the translated file.
If the command is omitted the terminology recognition is inactive. If no
MultiTerm is running then the terminology recognition is omitted regardless of
the settings in the command.

Transl at eTer ns=[0- 2]
Command (optional)
Job File [Translate]

Fl ag

Long (obligatory)

The table explains the effect of the different values:

0 = Don’t translate terms. The terminology recognition is inactive.

1 = Replace terms. If a term is found the it is overwritten with its translation.

2 = Insert terms. If a term is found an annotation is inserted at the beginning of
the segment. The annotations contain the term and its translation.

"do not translate ternms during batch translation
Transl at eTer ns=0

UseTMFromPreviousAnalysis

Description:

Syntax:
Type:
Element of
Parameter
Type

Explanation

Example:

This command defines whether the Workbench shall use the Translation
Memory from the previous analysis or not when analyzing multiple files. If the
function is not used then the TM from the previous analysis is not used.

UseTMr onPr evi ousAnal ysi s={0; 1}
Command (obligatory)

Job File [Analyze] Task=Analyze

Fl ag

Boolean (obligatory)

If the flag is O (= false) then the TM from the previous analysis is not used. If
the flag is 1 (= true) then the TM from the previous analysis is used.

"do not use TM from previous anal ysis
UseTMr onPr evi ousAnal ysi s=0

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

Job File Commands: Reference Lists

B-37

WhenChanged (Translate Task)

Description:

Syntax:
Type:
Element of
Parameter
Type

Explanation

Example:

The command is the equivalent to the Update Changed T'ranslations group box
in the Translate Files dialog. It defines whether the Workbench should check if
a translation has been changed since the last automatic translation and if so
whether the document or the Translation Memory shall be updated. If the
command is not used the check for changed translations is omitted.

WhenChanged=[0- 2]
Command (optional)
Job File [Translate]
Fl ag

Long (obligatory)

The following table shows the effect of the different values:

0 = Don’t update. If changes are detected neither the 'T'M nor the document is
changed.

1 = Update TM. If changes are detected the translation from the document is
transferred to the TM

2 = Update Document. If changes are detected the translation from the TM
overwrites the document.

"do not update if translation has changed
WhenChanged=0

WhenChanged (Cleanup Task)

Description:

Syntax:
Type:
Element of
Parameter
Type

Explanation

Example:

The command is the equivalent to the Changed T'ranslations group box in the
Cleanup Files dialog. It defines whether the Workbench should check if a
translations in the document have been changed since the last translation and if
so what action shall be taken. If the command is not used the check for changed
translations is omitted.

WhenChanged=[0- 3]
Command (optional)
Job File [Cleanup]

Fl ag

Long (obligatory)

The following table shows the effect of the different values:
0 = Don’t update

1 = Don’t clean up

2 = Update Translation Memory

3 = Update Document

"update TMif translation has changed
WhenChanged=2

Translator’s Workbench, © 1994-98 by " TRADOS GmbH

