
curl_multi_socket(3) libcurl Manual curl_multi_socket(3)

NAME
curl_multi_socket − reads/writes available data

SYNOPSIS
#include <curl/curl.h>

CURLMcode curl_multi_socket(CURLM * multi_handle, curl_socket_t sockfd,
int *running_handles);

CURLMcode curl_multi_socket_all(CURLM *multi_handle,
int *running_handles);

DESCRIPTION
Alternative versions ofcurl_multi_perform(3) that allows the application to pass in one of the file descrip-
tors/sockets that have been detected to have "action" on them and let libcurl perform. This allows libcurl to
not have to scan through all possible file descriptors to check for action. When the application has detected
action on a socket handled by libcurl, it should callcurl_multi_socket(3) with the sockfd argument set to
the socket with the action.

At return, the intrunning_handles points to will contain the number of still running easy handles within
the multi handle. When this number reaches zero, all transfers are complete/done. Note that when you call
curl_multi_socket(3) on a specific socket and the counter decreases by one, it DOES NOT necessarily mean
that this exact socket/transfer is the one that completed. Usecurl_multi_info_read(3) to figure out which
easy handle that completed.

The curl_multi_socket functions inform the application about updates in the socket (file descriptor) status
by doing none, one or multiple calls to the socket callback function set with the CURLMOPT_SOCKET-
FUNCTION option tocurl_multi_setopt(3). They update the status with changes since the previous time
this function was called.

To force libcurl to (re-)check all its internal sockets and transfers instead of just a single one, you call
curl_multi_socket_all(3). This is typically done as the first function call before the application has any
knowledge about what sockets libcurl uses.

Applications should callcurl_multi_timeout(3) to figure out how long to wait for socket actions − at most
− before doing the timeout action: call thecurl_multi_socket(3) function with thesockfd argument set to
CURL_SOCKET_TIMEOUT.

CALLBACK DETAILS
The socketcallback function uses a prototype like this

int curl_socket_callback(CURL *easy, /* easy handle */
curl_socket_t s, /* socket */
int action, /* see values below */
void *userp, /* private callback pointer */
void *socketp); /* private socket pointer */

The callback MUST return 0.

The easy argument is a pointer to the easy handle that deals with this particular socket. Note that a single
handle may work with several sockets simultaneously.

Thes argument is the actual socket value as you use it within your system.

Theaction argument to the callback has one of five values:

libcurl 7.16.0 9 Jul 2006 1



curl_multi_socket(3) libcurl Manual curl_multi_socket(3)

CURL_POLL_NONE (0)
register, not interested in readiness (yet)

CURL_POLL_IN (1)
register, interested in read readiness

CURL_POLL_OUT (2)
register, interested in write readiness

CURL_POLL_INOUT (3)
register, interested in both read and write readiness

CURL_POLL_REMOVE (4)
deregister

The socketp argument is a private pointer you have previously set withcurl_multi_assign(3) to be associ-
ated with thes socket. If no pointer has been set, socketp will be NULL. This argument is of course a ser-
vice to applications that want to keep certain data or structs that are strictly associated to the given socket.

The userp argument is a private pointer you have previously set withcurl_multi_setopt(3) and the CURL-
MOPT_SOCKETDAT A option.

RETURN VALUE
CURLMcode type, general libcurl multi interface error code.

If you receive CURLM_CALL_MULTI_PERFORM, this basically means that you should call
curl_multi_perform again, before you wait for more actions on libcurl’s sockets. You don’t hav eto do it
immediately, but the return code means that libcurl may have more data available to return or that there may
be more data to send off before it is "satisfied".

NOTE that this only returns errors etc regarding the whole multi stack. There might still have occurred
problems on individual transfers even when this function returns OK.

TYPICAL USAGE
1. Create a multi handle

2. Set the socket callback with CURLMOPT_SOCKETFUNCTION

3. Add easy handles

4. Call curl_multi_socket_all() first once

5. Setup a "collection" of sockets to supervise when your socket callback is called.

6. Use curl_multi_timeout() to figure out how long to wait for action

7. Wait for action on any of libcurl’s sockets

8, When action happens, call curl_multi_socket() for the socket(s) that got action.

9. Go back to step 6.

AV AILABILITY
This function was added in libcurl 7.15.4, although not deemed stable yet.

SEE ALSO
curl_multi_cleanup(3), curl_multi_init(3), curl_multi_fdset(3), curl_multi_info_read(3)

libcurl 7.16.0 9 Jul 2006 2


