ZSl: The Zolera Soap Infrastructure

Developer’'s Guide
Release 2.0.0

Rich Salz,
Christopher Blunck

February 01, 2007

rsalz@datapower.com
blunck@python.org

COPYRIGHT

Copyright (©) 2001, Zolera Systems, Inc.
All Rights Reserved.

Copyright (©) 2002-2003, Rich Salz.
All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the ”Software”), to deal in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, provided that the above copyright notice(s) and this permission notice appear in all
copies of the Software and that both the above copyright notice(s) and this permission notice appear in supporting
documentation.

THE SOFTWARE IS PROVIDED ”AS 1S”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY
SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization of the copyright holder.

Acknowledgments

We are grateful to the members of the soapbuilders mailing list (see http://groups.yahoo.
com/soapbuilders), Fredrik Lundh for his soaplib package (see http://www.secretlabs.com/
downloads/index.htm\#soap), Cayce Ullman and Brian Matthews for their SOAP . py package (see http:
//sourceforge.net/projects/pywebsvcs).

We are particularly grateful to Brian Lloyd and the Zope Corporation (http://www.zope.com) for letting us
incorporate his ZOPE WebServices package and documentation into ZST.

Abstract

ZS1, the Zolera SOAP Infrastructure, is a Python package that provides an implementation of SOAP messaging, as
described in The SOAP 1.1 Specification. In particular, ZST parses and generates SOAP messages, and converts be-
tween native Python datatypes and SOAP syntax. It can also be used to build applications using SOAP Messages
with Attachments. 7ZST is “transport neutral”, and provides only a simple I/O and dispatch framework; a more com-
plete solution is the responsibility of the application using ZSI. As usage patterns emerge, and common application
frameworks are more understood, this may change.

ZST requires Python 2.3 or later and PyXML version 0.8.3 or later.

The ZST homepage is at http://pywebsvcs.sf.net/.

10

11

Introduction
1.1 How to Read this Document

Examples
2.1 Server Side Examples
2.2 Client Side Examples

Exceptions

Utilities
4.1

The ParsedSoap module — basic message handling

The TypeCode classes — data conversions

6.1 TC.TypeCode
6.2 TC.Any — the basis of dynamic typing
6.3 TC.SimpleType v v v v v v v v ..
6.4 Strings
6.5 Integers
6.6 Floating-point Numbers
6.7 DatesandTimes
6.8 Boolean.
69 XML
6.10 ComplexType.
6.11 Struct
6.12 Arrays
6.13 Apache Datatype

The SoapWriter module — serializing data
The Fault module — reporting errors
The resolvers module — fetching remote data

Dispatching and Invoking

10.1 Dispatching

10.2 The client module — sending SOAP messages

Bibliography

Low-Level Utilities

CONTENTS

p—

(O8]

11

13
13

15

19
19
21
23
23
24
25
26
26
27
27
28
28
29

31

33

35

37
37
40

43

CGI Script Array

Al Intro
A2 CGIScript
A3 clienttestscript.o
A4 SOAPTrace

CGI Script Struct

B.1 Intro
B.2 CGIScript e
B.3 clienttestscript. o
B4 SOAPTracey

Complete Low Level Example

C.1 Intro e
C2 code. i e e
C3 SOAPTrace i ...

pickler example

D.1 Intro e
D2 code.

CHAPTER
ONE

Introduction

ZS1, the Zolera SOAP Infrastructure, is a Python package that provides an implementation of the SOAP specification,
as described in The SOAP 1.1 Specification. In particular, ZST parses and generates SOAP messages, and converts
between native Python datatypes and SOAP syntax.

ZST requires Python 2.3 or later and PyXML version 0.8.3 or later.

The ZST project is maintained at SourceForge, at http://pywebsvcs.sf.net. ZST is discussed on the Python
web services mailing list, visithttp://lists.sourceforge.net/lists/listinfo/pywebsvcs-talk
to subscribe.

For those interested in using the wsdl2py tool see the Users Guide, it contains a detailed example of how to use the
code generation facilities in ZST.

For those interested in a high-level tutorial covering ZST and why Python was chosen, see the article http: //www.
xml.com/pub/a/ws/2002/06/12/soap.html, written by Rich Salz for xml.com.

SOAP-based processing typically involves several steps. The following list details the steps of a common processing
model naturally supported by ZST (other models are certainly possible):

1. zST takes data from an input stream and parses it, generating a DOM-based parse tree as part of creating a
ParsedSoap object. At this point the major syntactic elements of a SOAP message — the Header, the
Body, etc. — are available.

2. The application does header processing. More specifically, it does local dispatch and processing based on the
elements in the SOAP Header. The SOAP actor and mustUnderstand attributes are also handled (or at
least recognized) here.

3. ZSTI next parses the Body, creating local Python objects from the data in the SOAP message. The parsing is
often under the control of a list of data descriptions, known as typecodes, defined by the application because it
knows what type of data it is expecting. In cases where the SOAP data is known to be completely self-describing,
the parsing can be dynamic through the use of the TC . Any class.

4. The application now dispatches to the appropriate handler in order to do its “real work.” As part of its processing
it may create output objects

5. The application creates a SoapWriter instance and outputs an initial set of namespace entries and header
elements.

6. Any local data to be sent back to the client is serialized. As with Body parsing, the datatypes can be described
through typecodes or determined dynamically (here, through introspection).

7. In the event of any processing exceptions, a Fault object can be raised, created, and/or serialized.

Note that ZST is “transport neutral”, and provides only a simple I/O and dispatch framework; a more complete so-
lution is available through the use of included WSDL tools (wsdl2py), but otherwise this is the responsibility of the

application using ZSI. As usage patterns emerge, and common application frameworks are more understood, this may
change.

Within this document, tns is used as the prefix for the application’s target namespace, and the term element refers to
a DOM element node.)

1.1 How to Read this Document

Readers interested in using WSDL and clients to web services, and those intending on implementing web services
based on existing WSDL should refer to the Users Guide. Others interested in developing the simplest SOAP appli-
cations, or spending the least amount of time on building a web services infrastructure should read chapters 2, 3, and
10 of this document. Readers who are developing complex services, and who are familiar with XML Schema and/or
WSDL, should read this manual in order. This will provide them with enough information to implement the processing
model described above. They can skip probably skip chapters 2 and 10.

ZST has the capability to process WSDL definitions and XML Schema documents (described in The Web Services
Description Language and XMLSchema 1.0) and generate typecodes automatically. For more information see the
Users Guide.

2 Chapter 1. Introduction

CHAPTER
TWO

Examples

This chapter contains a number of examples to show off some of ZSI’s features. It is broken down into client-side
and server-side examples, and explores different implementation options zZST provides.

2.1 Server Side Examples

2.1.1 Simple example

Using the ZST . dispatch module, it is simple to expose Python functions as web services. Each function is invoked
with all the input parameters specified in the client’s SOAP request. Any value returned by the function will be
serialized back to the client; multiple values can be returned by returning a tuple.

The following code shows some simple services:

#!/usr/local/bin/python2.4
SOAP Array

def hello():
return ["Hello, world"]

def echo(xargs):
return args

def sum(*xargs):
sum = 0
for i in args: sum += i
return [sum]

def average (xargs):
return [sum(*args) / len(args)]

from ZSI import dispatch
dispatch.AsCGI (rpc=True)

Each function defines a SOAP request, so if this script is installed as a CGI script, a SOAP message can be posted to that
script’s URL with any of hello, echo, or average as the request element, and the value returned by the function
will be sent back. These functions expect and return SOAP-ENC:arrayType instances which are marshalled into
python 1ist instances, this script interoperates with the client .Binding. For more information see Appendix A.

The ZSTI CGI dispatcher catches exceptions and sends back a SOAP fault. For example, a fault will be sent if the

hello function is given any arguments, or if the average function is given a non-integer.

Here is another example but using SOAP-ENC:Struct instances which are marshalled into python dict instances, this
script interoperates with the client .NamedParamBinding. For more information see Appendix B.

#!/usr/local/bin/python2.4
SOAP Struct

def hello():
return {"value":"Hello, world"}

def echo (x*kw) :
return kw

def sum(x*xkw) :

sum = 0

for 1 in kw.values(): sum += 1
return {"value":sum}

def average (**xkw) :
d = sum(**kw)
return d["value"] = d["value"]/len (kw)

from ZSI import dispatch
dispatch.AsCGI (rpc=True)

2.1.2 low level soap processing example

We will now show a more complete example of a robust web service implemented at the SOAP layer. It takes as input
a player name and array of integers, and returns the average. It is presented in sections, following the steps detailed
above. A complete working example of this service is available in Appendix C.

The first section reads in a request, and parses the SOAP header.

4 Chapter 2. Examples

from ZSI import =

import sys

IN, OUT = sys.stdin, sys.stdout

try:
ps = ParsedSoap (IN)

except ParseException, e:
OUT.write (FaultFromZSIException (e) .AsSOAP ())
sys.exit (1)

except Exception, e:
Faulted while processing; we assume it’s in the header.
OUT.write (FaultFromException(e, 1) .AsSOAP())
sys.exit (1)

We are not prepared to handle any actors or mustUnderstand elements,
so we’ll arbitrarily fault back with the first one we found.
a = ps.WhatActorsArePresent ()
if len(a):
OUT.write (FaultFromActor (a[0]) .AsSOAP())
sys.exit (1)
mu = ps.WhatMustIUnderstand()
if len (mu) :
uri, localname = mul[0]
OUT.write (FaultFromNotUnderstood (uri, localname) .AsSOAP ())
sys.exit (1)

This section defines the mappings between Python objects and the SOAP data being transmitted. Recall that according

to the SOAP specification, RPC input and output are modeled as a structure.

class Player:
def __init__ (self, =xargs):
if not len(args): return
self.Name = args|[0]
self.Scores = args[l:]
Player.typecode = TC.Struct (Player, [
TC.String (' Name’),

TC.Array (' Integer’, TC.Integer (), 'Scores’,

1, "GetAverage’)
class Average:
def __init__ (self, average=None):
self.average = average
Average.typecode = TC.Struct (Average, [
TC.Integer (’'average’),
1, 'GetAverageResponse’)

This section parses the input, performs the application-level activity, and serializes the response.

undeclared=True),

2.1. Server Side Examples

try:
player = ps.Parse (Player.typecode)

except EvaluateException, e:
OUT.write (FaultFromZSIException (e) .AsSOAP ())
sys.exit (1)

try:
total = 0
for value in player.Scores: total = total + value
result = Average (total / len(player.Scores))
sw = SoapWriter ()
sw.serialize (result, Average.typecode)
sw.close ()
OUT.write (str (sw))
except Exception, e:
OUT.write (FaultFromException(e, 0, sys.exc_info () [2]).AsSOAP())
sys.exit (1)

In the serialize () call above, the second parameter is optional, since result is an instance of the Average
class, and the Average . typecode attribute is the typecode for class instances.

2.1.3 A mod_python example

The Apache module mod_python (see http://www.modpython.org) embeds Python within the Apache
server. In order to expose operations within a module via mod_python, use the dispatch.AsHandler () function.
The dispatch.AsHandler () function will dispatch requests to any operation defined in the module you pass it,
which allows for multiple operations to be defined in a module. The only trick is to use __import__ to load the XML
encodings your service expects. This is a required workaround to avoid the pitfalls of restricted execution with respect
to XML parsing.

The following is a complete example of a simple handler. The soap operations are implemented in the MyHandler
module:

def hello():
return {"value":"Hello, world"}

def echo (x*kw) :
return kw

def sum(x*kw) :

sum = 0

for 1 in kw.values(): sum += 1
return {"value":sum}

def average (xxkw) :
d = sum(**xkw)

d["value"] = d["value"]/len (kw)
return d

Dispatching from within mod_python is achieved by passing the aforementined MyHandler module to
dispatch.AsHandler (). The following code exposes the operations defined in MyHandler via SOAP:

6 Chapter 2. Examples

from ZSI import dispatch
from mod_python import apache

import MyHandler
mod = __import__ ("encodings.utf_8’, globals(), locals(), 'x'")
mod = __import__ (’encodings.utf_16_be’, globals(), locals(), "*')

def handler (req):
dispatch.AsHandler (modules= (MyHandler,), request=req)
return apache.OK

2.2 Client Side Examples

2.2.1 Simple Example

ZST provides two ways for a client to interactive with a server: the Binding or NamedParamBinding class and
the ServiceProxy class. The first is useful when the operations to be invoked are not defined in WSDL or when
only simple Python datatypes are used; the ServiceProxy class can be used to parse WSDL definitions in order to
determine how to serialize and parse the SOAP messages.

During development, it is often useful to record “packet traces” of the SOAP messages being exchanged. Both the
Bindingand ServiceProxy classes provide a t racefile parameter to specify an output stream (such as a file)
to capture messages. It can be particularly useful when debugging unexpected SOAP faults.

The first example provided below demonstrates how to use the NamedParamBinding class to connect to a remote
service and perform an operation.

#!/usr/bin/env python
import sys,time
from ZSI.client import NamedParamBinding as NPBinding

b = NPBinding (url='http://127.0.0.1/cgi-bin/soapstruct’, tracefile=sys.stdout)
print "Hello: ", b.hello()

print "Echo: ", b.echo(name="josh", year=2006, pi=3.14, time=time.gmtime ())
print "Sum: ", b.sum(one=1l, two=2, three=3)

print "Average: ", b.average (one=100, two=200, three=300, four=400)

2.2.2 Complex Example: pickler.py

If the operation invoked returns a ComplexType, typecode information must be provided in order to tell ZST how to
deserialize the response. Here is a sample server-side implementation (for the complete example see Appendix D):

2.2. Client Side Examples 7

class Person:

def __init__ (self, name=None, age=0):
self.name = name
self.age = age
Person.typecode = TC.Struct (Person,

[TC.String (' name’),
TC.InonNegativelInteger (’age’)],
"myApp:Person’)

my web service that returns a complex structure
def getPerson (name) :
fp = open(’%s.person.pickle’, % name, ’'r’)
return pickle.load (fp)

my web service that accepts a complex structure
def savePerson (person) :
fp = open(’%s.person.pickle’ % person.name, 'w’)
pickle (person, £fp)
fp.close ()

In order for ZST to transparently deserialize the returned complex type into a Person instance, a module defining
the class and its typecode can be passed into the Binding. It is also possible to explicitly tell ZST what typecode to
use by passing it as a parameter to the Binding.Receive () method.

The following fragment shows both styles:

import sys
from ZSI.client import Binding
from MyComplexTypes import Person

b = Binding (url="http://localhost/test3/pickler.py’, tracefile=sys.stdout)
person = Person (’christopher’, 26)
rsp = b.savePerson (person)

Because the returned complex type is defined in a class present in typesmodule, transparent deserialization is possible.
When sending complex types to the server, it is not necessary to list the module in typesmodule:

8 Chapter 2. Examples

import sys

import MyComplexTypes

from ZSI.client import NamedParamBinding as NPBinding, Binding
from ZSI import TC

kw = {’url’:"http://localhost/test3/pickler.py’, 'tracefile’ :sys.stdout}
b = NPBinding (*xkw)

rsp = b.getPerson (name=’christopher’)

assert type(rsp) is dict, ’'expecting a dict’

assert rsp[’Person’] [’name’] == ’christopher’, ’'wrong person’

b = NPBinding (typesmodule=MyComplexTypes, *xkw)

rsp = b.getPerson (name=’'christopher’)

assert isinstance(rsp[’Person’], MyComplexTypes.Person), (
"expecting instance of %s’ $MyComplexTypes.Person)

b = Binding (typesmodule=MyComplexTypes, #**kw)
class Name (str) :
typecode = TC.String("name")

rsp = b.getPerson (Name (' christopher’))
assert isinstance(rsp[’Person’], MyComplexTypes.Person), (
"expecting instance of %s’ $MyComplexTypes.Person)

2.2. Client Side Examples

10

CHAPTER
THREE

Exceptions

exception ZSIException
Base class for all ZSI Exceptions, it is a subtype of the Python Exception class.

exception ParseException
ZS1I can raise this exception while creating a ParsedSoap object. It is a subtype of the ZSIException
class. The string form of a ParseExcept ion object consists of a line of human-readable text. If the backtrace
is available, it will be concatenated as a second line.

The following attributes are read-only:

inheader
A boolean that indicates if the error was detected in the SOAP Header element.

str
A text string describing the error.

trace
A text string containing a backtrace to the error. This may be None if it was not possible, such as when there
was a general DOM exception, or when the st r text is believed to be sufficient.

exception EvaluateException
This exception is similar to ParseException, except that ZSI may raise it while converting between SOAP
and local Python objects.

The following attributes are read-only:

str
A text string describing the error.

trace
A text backtrace, as described above for ParseException.

11

12

CHAPTER
FOUR

Utilities

ZS1 defines some utility methods that general applications may want to use.

Version ()
Returns a three-element tuple containing the numbers representing the major, minor, and release identifying the
ZST version. New in version 1.1.

4.1 Low-Level Utilities

ZST also defines some low-level utilities for its own use that start with a leading underscore and must be imported
explicitly. They are documented here because they can be useful for developing new typecode classes.

These functions are mostly used in in parse methods and the ParsedSoap class. The serialization routines use the
ElementProxy class to encapsulate common DOM-level operations.

Some lambda’s are defined so that some DOM accessors will return an empty list rather than None. This means that
rather than writing:

if elt.childNodes:
for N in elt.childNodes:

One can write:

for N in _children (elt) :

Other Lambda’s return SOAP-related attributes from an element, or None if not present.

_attrs (element)
Returns a list of all attributes of the specified element.

_backtrace (elt, dom)
This function returns a text string that traces a “path” from dom, a DOM root, to elt, an element within that
document, in XPath syntax.

_child_elements (element)
Returns a list of all children elements of the specified e lement.

_children (element)
Returns a list of all children of the specified e lement.

_copyright _empty _nsuri_list
find arraytype (element)

13

The value of the SOAP arrayType attribute. New in version 1.2,

_find_attr (element, name)
The value of the unqualified name attribute.

find attxNS (element, namespaceURI, localName)
The value of a name attribute in a namespace namespaceURLI.

_find_attrNodeNS (element, namespaceURI, localName)
Works just like _find_attrNS, but this function grabs the attribute Node to distinquish between an unspeci-
fied attribute(None) and one set to empty string(”””).

_find_default_namespace (element)
Returns the value of the default namespace.

_find_encstyle (element)
The value of the SOAP encodingStyle attribute.

_find_href (element)
The value of the unqualified href attribute.

_find_type (element)
The value of the XML Schema t ype attribute.

find xmlns_prefix (element, prefix)
The value of the xmlIns:prefix type attribute.

find xsi attr (element, attribute)
Find the attribute in any of the XMLSchema namespaces.

_get_element_nsuri_name (element)
Returns a (namespace, name) tuple representing the element tag.

_get_idstr (obj)
Substitute for id function. Python 2.3.x generates a FutureWarning for negative IDs, so we use a different
prefix character to ensure uniqueness, and call abs() to avoid the warning.

_get_postvalue_from_absoluteURI (url)
Returns POST value from ur1l, and caches these values.

_resolve_prefix (element, prefix)
resolve prefix to a namespaceURI. If None or empty st r, return default namespace or None if not defined.

_valid_encoding (elt)
Return true if the element e1t has a SOAP encoding that can be handled by ZSI (currently Section 5 of the
SOAP 1.1 specification or an empty encoding for XML).

14 Chapter 4. Utilities

CHAPTER
FIVE

The ParsedSoap module — basic
message handling

This class represents an input stream that has been parsed as a SOAP message.

class ParsedSoap (input[, **keywords])
Creates a ParsedSoap object from the provided input source. If input is not a string, then it must be an
object with a read () method that supports the standard Python “file read” semantics.

The following keyword arguments may be used:

Keyword Default | Description
envelope True | expecta SOAP Envelope
keepdom False | Do not release the DOM when this object is destroyed. To ac-

cess the DOM object, use the GetDomAndReader () method. The
reader object is necessary to properly free the DOM structure using
reader.releaseNode (dom). New in version 1.2.

readerclass None Class used to create DOM-creating XML readers; described below. New
in version 1.2.

resolver None Value for the resolver attribute; see below.

trailers False | Allow trailing data elements to appear after the Body.

The following attributes of a ParsedSoap are read-only:

body
The root of the SOAP Body element. Using the GetElementNSdict () method on this attribute can be
useful to get a dictionary to be used with the SoapWriter class.

body_root
The element that contains the SOAP serialization root; that is, the element in the SOAP Body that “starts off”
the data.

data_elements
A (possibly empty) list of all child elements of the Body other than the root.

header
The root of the SOAP Header element. Using the GetElementNSdict () method on this attribute can be
useful to get a dictionary to be used with the SoapWriter class.

header elements
A (possibly empty) list of all elements in the SOAP Header.

trailer elements
Returns a (possibly empty) list of all elements following the Body. If the trailers keyword was not used
when the object was constructed, this attribute will not be instantiated and retrieving it will raise an exception.

The following attribute may be modified:

15

resolver
If not None, this attribute can be invoked to handle absolute href’s in the SOAP data. It will be invoked as
follows:

resolver (uri, tc, ps, **keywords)
The uri parameter is the URI to resolve. The tc parameter is the typecode that needs to resolve href;
this may be needed to properly interpret the content of a MIME bodypart, for example. The ps parameter
is the ParsedSoap object that is invoking the resolution (this allows a single resolver instance to handle
multiple SOAP parsers).

Failure to resolve the URI should result in an exception being raised. If there is no content, return None;
this is not the same as an empty string. If there is content, the data returned should be in a form under-
standable by the typecode.

The following methods are available:

Backtrace (elt)
Returns a human-readable “trace” from the document root to the specified element.

FindLocalHREF (href, elt)
Returns the element that has an id attribute whose value is specified by the href fragment identifier. The
href must be a fragment reference — that is, it must start with a pound sign. This method raises an
EvaluateException exception if the element isn’t found. It is mainly for use by the parsing methods
in the TypeCode module.

GetElementNSdict (elt)
Return a dictionary for all the namespace entries active at the current element. Each dictionary key will be the
prefix and the value will be the namespace URIL.

GetMyHeaderElements ([aclorlistzNone])
Returns a list of all elements in the Header that are intended for this SOAP processor. This includes all
elements that either have no SOAP actor attribute, or whose value is either the special “next actor” value or
in the actorlist list of URDs.

GetDomAndReader ()
Returns a tuple containing the dom and reader objects, (dom, reader). Unless keepdom is true, the dom
and reader objects will go out of scope when the ParsedSoap instance is deleted. If keepdom is true, the reader
object is needed to properly clean up the dom tree with reader.releaseNode (dom).

IsAFault ()
Returns true if the message is a SOAP fault.

Parse (how)
Parses the SOAP Body according to the how parameter, and returns a Python object. If how is not a
TC.TypeCode object, then it should be a Python class object that has a t ypecode attribute.

ResolveHREF (uri, tc[, **keywords])
This method is invoked to resolve an absolute URI. If the typecode tc has a resolver attribute, it will use
it to resolve the URI specified in the uri parameter, otherwise it will use its own resolver, or raise an
EvaluateException exception.

Any keyword parameters will be passed to the chosen resolver. If no content is available, it will return None.
If unable to resolve the URI it will raise an EvaluateException exception. Otherwise, the resolver should
return data in a form acceptable to the specified typecode, tc. (This will almost always be a file-like object
holding opaque data; for XML, it may be a DOM tree.)

WhatActorsArePresent ()
Returns a list of the values of all the SOAP actor attributes found in child elements of the SOAP Header.

WhatMustIUnderstand ()
Returns a list of ‘ (uri, localname)’ tuples for all elements in the SOAP Header that have the SOAP
mustUnderstand attribute set to a non-zero value.

16 Chapter 5. The ParsedSoap module — basic message handling

ZST supports multiple DOM implementations. The readerclass parameter specifies which one to use. The
default is to use the DOM provided with the PyXML package developed by the Python XML SIG, provided through
the PyExpat .Reader class in the xm1 .dom.ext . reader module.

The specified reader class must support the following methods:

fromString (string)
Return a DOM object from a string.

fromStream (stream)
Return a DOM object from a file-like stream.

releaseNode (dom)
Free the specified DOM object.

The DOM object must support the standard Python mapping of the DOM Level 2 specification. While only a small
subset of specification is used, the particular methods and attributes used by ZST are available only by inspecting the
source.

To use the cDomlette DOM provided by the 4Suite package, use the NonvalidatingReader class in the
Ft.Xml.Domlette module. Due to name changes in the 1.0 version of 4Suite, a simple adapter class is required to
use this DOM implementation.

from 4Suite.Xml.Domlette import NonvalidatingReaderBase
class 4SuiteAdapterReader (NonvalidatingReaderBase) :

def fromString(self, str):
return self.parseString(str)

def fromStream(self, stream):
return self.parseStream(stream)

def releaseNode (self, node):
pass

17

18

CHAPTER
SIX

The TypeCode classes — data
conversions

The TypeCode module defines classes used for converting data between SOAP data and local Python objects. Python
numeric and string types, and sequences and dictionaries, are supported by ZSI. The TC.TypeCode class is the
parent class of all datatypes understood by ZST.

All typecodes classes have the prefix TC ., to avoid name clashes.

ZS1 provides fine-grain control over the names used when parsing and serializing XML into local Python objects,
through the use of two attributes: the pname, the aname. The pname specifies the name expected on the XML
element being parsed and the name to use for the output element when serializing. The aname is the name to use for
the analogous attribute in the local Python object.

The pname is the parameter name. It specifies the incoming XML element name and the default values for the Python
attribute and serialized names. All typecodes take the pname argument. This name can be specified as either a list or
a string. When specified as a list, it must have two elements which are interpreted as a “(namespace-URI, localname)”
pair. If specified this way, both the namespace and the local element name must match for the parse to succeed. For the
Python attribute, and when generating output, only the “localname” is used. If a namespace-URI is specified then the
full qualified name is used for output, and it is required for input; this requires the namespace prefix to be specified.

The aname is the attribute name. This parameter overrides any value implied by the pname. Typecodes nested in a
TC.Struct or TC.ComplexType can use this parameter to specify the tag, dictionary key, or instance attribute to
set.

The nsdict parameter to the SoapWriter construct can be used to specify prefix to namespace-URI mappings,
these are otherwise handled automatically.

6.1 TC.TypeCode

The TypeCode class is the parent class of all typecodes.

class TypeCode (**keywords)
The following keyword arguments may be used:

19

Keyword Default Description

pname None parameter name of the object

aname None attribute name of the object

minOccurs 1 schema facet minimum occurances

maxOccurs 1 schema facet maximum occurances

nillable False schema facet is this nillable (xsi:nil="true")

typed True Output type information (in the xs1i : type attribute) when serializing. By

special dispensation, typecodes within a TC.Struct object inherit this
from the container.

unique 0 If true, the object is unique and will never be “aliased” with another object,
so the id attribute need not be output.
pyclass None when parsing data, instances of this class can be created to store the data.

Default behavior is reflective of specific TypeCode classes.
attrs_aname | '_attrs’ | attribute name of the object where attribute values are stored. Used for
serialization and parsing.

Optional elements are those which do not have to be an incoming message, or which have the XML Schema
nil attribute set. When parsing the message as part of a St ruct, then the Python instance attribute will not
be set, or the element will not appear as a dictionary key. When being parsed as a simple type, the value None
is returned. When serializing an optional element, a non-existent attribute, or a value of None is taken to mean
not present, and the element is skipped.

typechecks
This is a class attribute. If true (the default) then all typecode constructors do more rigorous type-checking on
their parameters.

tag
This is a class attribute. Specifies the global element declaration this typecode represents, the value is a
‘(namespace, name)’ tuple.

type
This is a class attribute. Specifies the global type definition this typecode represents, the value is a
‘(namespace, name)’ tuple.

attribute_typecode_dict
This is a class attribute. This is a dict of * (URI, NCName) tuple keys, the values of each is a typecode. This
is how attribute declarations other than SOAP and XMLSchema attribute declarations (eg. xsi:type, id,
href, etc) are represented.

logger
This is a class attribute. logger instance for this class.

The following methods are useful for defining new typecode classes; see the section on dynamic typing for more
details. In all of the following, the ps parameter is a ParsedSoap object.

checkname (elt, ps)
Checks if the name and type of the element e1t are correct and raises a EvaluateException if not. Returns
the element’s type as a “ (uri, localname)’ tuple if so.

checktype (elt, ps)
Like checkname () except that the element name is ignored. This method is actually invoked by
checkname () to do the second half of its processing, but is useful to invoke directly, such as when resolving
multi-reference data.

nilled (elt, ps)
If the element elt has data, this returns False. If it has no data, and the typecode is not optional, an
EvaluateException is raised; if it is optional, a True is returned.

simple_value (elt, ps, mixed=False)
Returns the text content of the element elt. If no value is present, or the element has non-text chil-

20 Chapter 6. The TypeCode classes — data conversions

dren, an EvaluateException is raised. If mixed is False if child elements are discovered an
EvaluateException israised, else join all text nodes and return the result.

6.2 TC.Any — the basis of dynamic typing

SOAP provides a flexible set of serialization rules, ranging from completely self-describing to completely opaque,
requiring an external schema. For example, the following are all possible ways of encoding an integer element i with
a value of 12:

6.2.1 simple data

— requires type information

<tns:1i xsi:type="SOAP-ENC:integer">12</tns:i>
<tns:1i xsi:type="xsd:nonNegativeInteger">12</tns:i>
<SOAP-ENC:integer>12</SOAP-ENC:integer>
<tns:i>12</tns:i>

The first three lines are examples of fyped elements. If ZST is asked to parse any of the above examples, and a TC . Any
typecode is given, it will properly create a Python integer for the first three, and raise a EvaluateException for
the fourth.

6.2.2 compound data

— Struct or Array Compound data, such as a st ruct, may also be self-describing (namespace are omitted for clarity):

<tns:foo>

<tns:i xsi:type="SOAP-ENC:integer">12</tns:i>

<tns:name xsi:type="SOAP-ENC:string">Hello world</tns:name>
</tns:foo>

If this is parsed with a TC . Any typecode, either a Python dict is created orif aslist is Truea list:

ps = ParsedSoap (xml, envelope=False)
print ps.Parse (TC.Any())
{ "name’ : u’Hello world’, rir: 12 }

print ps.Parse (TC.Any (aslist=True))
[12, u’Hello world’]

Note that one preserves order, while the other preserves the element names.

6.2.3 class description

class Any (name [**keywords])
Used for parsing incoming SOAP data (that is typed), and serializing outgoing Python data.

The following keyword arguments may be used:

6.2. TC.Any — the basis of dynamic typing 21

Keyword | Default | Description

aslist False | If true, then the data is (recursively) treated as a list of values. The de-
fault is a Python dictionary, which preserves parameter names but loses the
ordering. New in version 1.1.

In addition, if the Python object being serialized with an Any has a t ypecode attribute, then the serialize
method of the typecode will be invoked to do the serialization. This allows objects to override the default
dynamic serialization.

Referring back to the compound XML data above, it is possible to create a new typecode capable of parsing elements
of type mytype. This class would know that the i element is an integer, so that the explicit typing becomes optional,
rather than required.

6.2.4 Adding new types

Most of the TypeCodes classes in TC are registered with Any, making an instance of itself available for dynamic
typing. New TypeCode classes can be created and registered with Any by using RegisterType. In order to
override an existing entry in the registry call RegisterType with clobber=True. The serialization entries are
mappings between builtin Python types and a TypeCode instance, it is not possible to have one Python type map to
multiple typecodes. The parsing entries are mappings between (namespaceURI, name) tuples, representing the
xs1:type attribute, and a TypeCode instance. Thus, only one instance of a TypeCode class can represent a XML
Schema type. So this mechanism is not appropriate for representing XML Schema element information.

class NEWTYPECODE (TypeCode) (...)
The new typecode should be derived from the TC . TypeCode class, and TypeCode.__init__ () mustbe
invoked in the new class’s constructor.

parselist
This is a class attribute, used when parsing incoming SOAP data. It should be a sequence of ‘(uri,
localname)’ tuples to identify the datatype. If uri is None, it is taken to mean either the XML Schema
namespace or the SOAP encoding namespace; this should only be used if adding support for additional primitive
types. If this list is empty, then the type of the incoming SOAP data is assumed to be correct; an empty list also
means that incoming typed data cannot by dynamically parsed.

errorlist
This is a class attribute, used when reporting a parsing error. It is a text string naming the datatype that was
expected. If not defined, ZST will create this attribute from the parselist attribute when it is needed.

seriallist
This is a class attribute, used when serializing Python objects dynamically. It specifies what types of object
instances (or Python types) this typecode can serialize. It should be a sequence, where each element is a Python
class object, a string naming the class, or a type object from Python’s t ypes module (if the new typecode is
serializing a built-in Python type).

parse (elt, ps)
ZST invokes this method to parse the elt element and return its Python value. The ps parameter is the
ParsedSoap object, and can be used for dereferencing href’s, calling Backtrace () to report errors, etc.

serialize (sw, pyobj[, **keywords])
z ST invokes this method to output a Python object to a SOAP stream. The sw parameter willbe a SoapWriter
object, and the pyob j parameter is the Python object to serialize.

The following keyword arguments may be used:

22 Chapter 6. The TypeCode classes — data conversions

Keyword Default Description

attrtext None Text (with leading space) to output as an attribute; this is normally used by
the TC.Array class to pass down indexing information.

name None Name to use for serialization; defaults to the name specified in the typecode,
or a generated name.

typed per-typecode | Whether or not to output type information; the default is to use the value in
the typecode.

Once the new typecode class has been defined, it should be registered with ZSI’s dynamic type system by invoking
the following function:

RegisterType (class[, clobber:O[, **keywords]])
By default, it is an error to replace an existing type registration, and an exception will be raised. The clobber
parameter may be given to allow replacement. A single instance of the class object will be created, and the
keyword parameters are passed to the constructor.

If the class is not registered, then instances of the class cannot be processed as dynamic types. This may be acceptable
in some environments.

6.3 TC.SimpleType

Parent class of all simple types.

empty_ content
This is a class attribute. Value returned when tag or node is present, is not nilled, and without text content.

6.4 Strings

SOAP/XMLSchema Strings are Python strings.

class String (name [**keywords])
The parent type of all strings.

The following keyword arguments may be used:

Keyword | Default | Description

resolver | None | A function that can resolve an absolute URI and return its content as a
string, as described in the ParsedSoap description.

strip True | If true, leading and trailing whitespace are stripped from the content.

class Enumeration (value_list, name [**keywords])
Like TC. St ring, but the value must be a member of the choices sequence of text strings

In addition to TC. St ring, the basic string, several subtypes are provided that transparently handle common encod-
ings. These classes create a temporary string object and pass that to the serialize () method. When doing RPC
encoding, and checking for non-unique strings, the TC. St ring class must have the original Python string, as well
as the new output. This is done by adding a parameter to the serialize () method:

Keyword | Default | Description

orig None | Ifderiving a new typecode from the string class, and the derivation creates a
temporary Python string (such as by Base 64 St ring), than this parameter
is the original string being serialized.

class Base64String (name[, **keywords])
The value is encoded in Base-64.

6.3. TC.SimpleType 23

class HexBinaryString (name [, **keywords])
Each byte is encoded as its printable version.

class URI (name [**keywords])
The value is URL quoted (e.g., $20 for the space character).

It is often the case that a parameter will be typed as a string for transport purposes, but will in fact have special syntax
and processing requirements. For example, a string could be used for an XPath expression, but it is more convenient
for the Python value to actually be the compiled expression. Here is how to do that:

import xml.xpath.pyxpath
import xml.xpath.pyxpath.Compile as _xpath_compile

class XPathString(TC.String) :
def _ _init_ (self, name, *xkw):
TC.String.__init__ (self, name, =*x*kw)

def parse(self, elt, ps):
val = TC.String.parse(self, elt, ps)
try:
val = _xpath_compile (val)
except:
raise EvaluateException("Invalid XPath expression",
ps.Backtrace (elt))
return val

In particular, it is common to send XML as a string, using entity encoding to protect the ampersand and less-than
characters.

class XMLString (name [, **keywords])
Parses the data as a string, but returns an XML DOM object. For serialization, takes an XML DOM (or element
node), and outputs it as a string.

The following keyword arguments may be used:

Keyword | Default | Description
Class used to create DOM-creating XML readers; described in the
ParsedSoap chapter.

readerclass None

6.5 Integers

SOAP/XMLSchema integers are Python integers.

class Integer ([**keywords])
The parent type of all integers. This class handles any of the several types (and ranges) of SOAP integers.

The following keyword arguments may be used:

Keyword | Default | Description
format ‘ sd ‘ Format string for serializing. New in version 1.2.

class IEnumeration (choices[, **keywords])
Like TC. Integer, but the value must be a member of the choices sequence.

A number of sub-classes are defined to handle smaller-ranged numbers.

class Ibyte ([**keywords])
A signed eight-bit value.

24 Chapter 6. The TypeCode classes — data conversions

class TunsignedByte ([**keywords])
An unsigned eight-bit value.

class Ishort ([*kkeywords])
A signed 16-bit value.

class TunsignedShort ([**keywords])
An unsigned 16-bit value.

class Iint ([**keywords])
A signed 32-bit value.

class TunsignedInt ([**keywords])
An unsigned 32-bit value.

class I1long ([*kkeywords])
An signed 64-bit value.

class TunsignedLong ([**keywords])
An unsigned 64-bit value.

class IpositivelInteger ([**keywords])
A value greater than zero.

class InegativelInteger ([**keywords])
A value less than zero.

class InonPositiveInteger ([**keywords])
A value less than or equal to zero.

class InonNegativelInteger ([**keywords])
A value greater than or equal to zero.

6.6 Floating-point Numbers

SOAP/XMLSchema floating point numbers are Python floats.

class Decimal ([**keywords])
The parent type of all floating point numbers. This class handles any of the several types (and ranges) of SOAP
floating point numbers.

The following keyword arguments may be used:

Keyword | Default | Description
format | %f | Format string for serializing. New in version 1.2.

class FPEnumeration (value_list, name [**keywords])
Like TC.Decimal, but the value must be a member of the value_1ist sequence. Be careful of round-off
errors if using this class.

Two sub-classes are defined to handle smaller-ranged numbers.

class FPfloat (name [, **keywords])
An IEEE single-precision 32-bit floating point value.

class FPdouble (name [, **keywords])
An IEEE double-precision 64-bit floating point value.

6.6. Floating-point Numbers 25

6.7 Dates and Times

SOAP dates and times are Python time tuples in UTC (GMT), as documented in the Python t ime module. Time is
tricky, and processing anything other than a simple absolute time can be difficult. (Even then, timezones lie in wait to
trip up the unwary.) A few caveats are in order:

1. Some date and time formats will be parsed into tuples that are not valid time values. For example, 75 minutes is
a valid duration, although not a legal value for the minutes element of a time tuple.

2. Fractional parts of a second may be lost when parsing, and may have extra trailing zero’s when serializing.

3. Badly-formed time tuples may result in non-sensical values being serialized; the first six values are taken directly
as year, month, day, hour, minute, second in UTC.

4. Although the classes Duration and Gregorian are defined, they are for internal use only and should not be
included in any TypeCode you define. Instead, use the classes beginning with a lower case g in your typecodes.

In addition, badly-formed values may result in non-sensical serializations.
When serializing, an integral or floating point number is taken as the number of seconds since the epoch, in UTC.

class Duration ([**keywords])
A relative time period. Negative durations have all values less than zero; this makes it easy to add a duration to
a Python time tuple.

class Gregorian ([**keywords])
An absolute time period. This class should not be instantiated directly; use one of the gXXX classes instead.

class gDateTime ([**keywords])
A date and time.

class gDate ([**keywords])
A date.

class gYearMonth ([**keywords])
A year and month.

class gYear ([**keywords])
A year.

class gMonthDay ([**keywords])
A month and day.

class gDay ([**keywords])
A day.

class gTime ([**keywords])
A time.

6.8 Boolean

SOAP Booleans are Python integers.

class Boolean ([**keywords])
When marshaling zero or the word “false” is returned as 0 and any non-zero value or the word “true” is returned
as 1. When serializing, the number 0 or 1 will be generated.

26 Chapter 6. The TypeCode classes — data conversions

6.9 XML

XML is a Python DOM element node. If the value to be serialized is a Python string, then an href is generated, with
the value used as the URI. This can be used, for example, when generating SOAP with attachments. Otherwise, the
XML is typically put inside a wrapper element that sets the proper SOAP encoding style.

For efficiency, incoming XML is returend as a “pointer” into the DOM tree maintained within the ParsedSoap
object. If that object is going to go out of scope, the data will be destroyed and any XML objects will become empty
elements. The class instance variable copyit, if non-zero indicates that a deep copy of the XML subtree will be
made and returned as the value. Note that it is generally more efficient to keep the ParsedSoap object alive until
the XML data is no longerneeded.

class XML ([**keywords])
This typecode represents a portion of an XML document embedded in a SOAP message. The value is the
element node.

The following keyword arguments may be used:

Keyword Default Description

copyit TC.XML.copyit | Return a copy of the parsed data.

comments 0 Preserve comments in output.

inline 0 The XML sub-tree is single-reference, so can be output in-place.

resolver None A function that can resolve an absolute URI and return its content as an
element node, as described in the ParsedSoap description.

wrapped 1 If zero, the XML is output directly, and not within a SOAP wrapper element.
New in version 1.2.

When serializing, it may be necessary to specify which namespace prefixes are “active” in the XML. This is done by
using the unsuppressedPrefixes parameter when calling the serialize () method. (This will only work
when XML is the top-level item being serialized, such as when using typecodes and document-style interfaces.)

Keyword | Default | Description

unsuppressedPrefixes ‘ [‘ An array of strings identifying the namespace prefixes that should be output.

6.10 ComplexType

Represents the XMLSchema ComplexType . New in version 2.0.

class ComplexType (pyclass, ofwhat[, **keywords])
This class defines a compound data structure. If pyclass is None, then the data will be marshaled into a
Python dictionary, and each item in the ofwhat sequence specifies a (possible) dictionary entry. Otherwise,
pyclass must be a Python class object. The data is then marshaled into the object, and each item in the
ofwhat sequence specifies an attribute of the instance to set.

Note that each typecode in ofwhat must have a name.

The following keyword arguments may be used:

6.9. XML 27

Keyword Default | Description

inorder False Items within the structure must appear in the order specified in the ofwhat
sequence.

inline False The structure is single-reference, so ZSI does not have to use href/id
encodings.

mutable False If an object is going to be serialized multiple times, and its state may be

modified between serializations, then this keyword should be used, other-
wise a single instance will be serialized, with multiple references to it. This
argument implies the inline argument. New in version 1.2.

type None A ‘(uri, localname)’ tuple that defines the type of the structure.
If present, and if the input data has a xsi:type attribute, then the
namespace-qualified value of that attribute must match the value specified
by this parameter. By default, type-checking is not done for structures;
matching child element names is usually sufficient and senders rarely pro-
vide type information.

mixed False using a mixed content model, allow text and element content.
mixed_aname | '_text’ | if mixed is True, text content is set in this attribute (key).

If the typed keyword is used, then its value is assigned to all typecodes in the ofwhat parameter. If any of
the typecodes in ofwhat are repeatable, then the inorder keyword should not be used and the hasextras
parameter must be used.

For example, the following C structure:

struct foo {
int 1i;
char*x text;
}i

could be declared as follows:

class foo:
def _ _init_ (self, name):
self.name = name
def _ str_ (self):
return str((self.name, self.i, self.text))

foo.typecode = TC.Struct (foo,
(TC.Integer(’i’), TC.String(’text’)),
"foo’)

6.11 Struct

SOAP Struct is a complex type for accessors identified by name. No element may have the same name as any other,
nor may any element have a maxOccurs § 1. SOAP Structs are either Python dictionaries or instances of application-
specified classes.

6.12 Arrays

SOAP arrays are Python lists; multi-dimensional arrays are lists of lists and are indistinguishable from a SOAP array
of arrays. Arrays may be sparse, in which case each element in the array is a tuple of * (subscript, data)’ pairs.
If an array is not sparse, a specified fill element will be used for the missing values.

Currently only singly-dimensioned arrays are supported.

28 Chapter 6. The TypeCode classes — data conversions

class Array (atype, ofwhat[, **keywords])
The atype parameter is a (URI, NCName) tuple representing the SOAP array type. The ofwhat parameter
is a typecode describing the array elements.

The following keyword arguments may be used:

Keyword Default | Description

childnames | None | Default name to use for the child elements.

dimensions 1 The number of dimensions in the array.

fill None | The value to use when an array element is omitted.

mutable False | If an object is going to be serialized multiple times, and its state may be

modified between serializations, then this keyword should be used, other-
wise a single instance will be serialized, with multiple references to it.

nooffset 0 Do not use the SOAP of fset attribute so skip leading elements with the
same value as £i11.

sparse False | The array is sparse.

size None | An integer or list of integers that specifies the maximum array dimensions.

undeclared | False | The SOAP ‘arrayType’ attribute need not appear.

6.13 Apache Datatype

The Apache SOAP project, urlhttp://xml.apache.org/soap/index.html, has defined a popular SOAP datatype in the
http://xml.apache.org/xml-soap namespace, a Map.

The Map type is encoded as a list of 1 tem elements. Each item has a key and value child element; these children
must have SOAP type information. An Apache Map is either a Python dictionary or a list of two-element tuples.

class Apache .Map (name [, **keywords])
An Apache map. Note that the class name is dotted.

The following keyword arguments may be used:

Keyword | Default | Description
aslist | 0 | Usealistof tuples rather than a dictionary.

6.13. Apache Datatype 29

30

CHAPTER
SEVEN

The SocapWriter module — serializing
data

The SoapWriter class is used to output SOAP messages. Note that its output is encoded as UTF-8; when transporting
SOAP over HTTP it is therefore important to set the charset attribute of the Content—-Type header.

The SoapWriter class reserves some namespace prefixes:
Prefix URI

SOAP-ENV | http://schemas.xmlsoap.org/soap/envelope/
SOAP-ENC | http://schemas.xmlsoap.org/soap/encoding/

ZST http://www.zolera.com/schemas/ZSI/
xsd http://www.w3.0rg/2001/XMLSchema
xsi http://www.w3.0rg/2001/XMLSchema-instance

class SoapWriter (optional**keywords)
The following keyword arguments may be used:

Keyword Default Description

encodingStyle None If not None, then use the specified value as the value for the SOAP
encodingStyle attribute. New in version 1.2.

envelope True Create a SOAP Envelope New in version 1.2.

nsdict {1} Dictionary of namespaces to declare in the SOAP Envelope

header True create a SOAP Header element

outputclass ElementProxy | wrapper around DOM or other XML library.

Creating a SoapWriter object with envelope set to False results in an object that can be used for serializing
objects into a string.

serialize (pyobj [, typecode:None[, root=None [, header_pyobjs=None [, **keyWOrds]]]])
This method serializes the pyob j Python object as directed by the t ypecode typecode object. If typecode
is omitted, then pyob j should be a Python object instance of a class that has a t ypecode attribute. It returns
self, so that serializations can be chained together, or so that the c1ose () method can be invoked. The root
parameter may be used to explicitly indicate the root (main element) of a SOAP encoding, or indicate that the
item is not the root. If specified, it should have the numeric value of zero or one. Any other keyword parameters
are passed to the typecode’s serialize method.

close()
Invokes all the callbacks, if any. The c1lose operations can only happen once, if invoked a second time it will
just return. This method will be invoked automatically if the object is deleted.

str__ ()
Invokes the close method, and returns a string representation of the serialized object. Assumes that
serialize has been invoked.

31

The following methods are primarily useful for those writing new typecodes.

AddCallback (func, arg)
Used by typecodes when serializing, allows them to add output after the SOAP Body is written but before
the SOAP Envelope is closed. The function func () will be called with the SoapWriter object and the
specified arg argument, which may be a tuple.

Forget (obj)
Forget that ob j has been seen before. This is useful when repeatedly serializing a mutable object.

Known (0bj)
If obj has been seen before (based on its Python id), return 1. Otherwise, remember ob j and return 0.

ReservedNsS (prefix, uri)
Returns true if the specified namespace prefix and uri collide with those used by the implementation.

writeNSDict (nsdict)
Outputs nsdict as a namespace dictionary. It is assumed that an XML start-element is pending on the output
stream.

32 Chapter 7. The SoapWriter module — serializing data

CHAPTER
EIGHT

The Fault module — reporting errors

SOAP defines a fault message as the way for a recipient to indicate it was unable to process a message. The ZST
Fault class encapsulates this.

class Fault (code, string [>“”‘/’ceywords])
The code parameter is a text string identifying the SOAP fault code, a namespace-qualified name. The class
attribute Fault .Client can be used to indicate a problem with an incoming message, Fault .Server can
be used to indicate a problem occurred while processing the request, or Fault .MU can be used to indicate a
problem with the SOAP mustUnderstand attribute. The string parameter is a human-readable text string
describing the fault.

The following keyword arguments may be used:

Keyword Default | Description

actor None | A string identifying the actor attribute that caused the problem (usually
because it is unknown).

detail None | A sequence of elements to output in the detail element; it may also be
a text string, in which case it is output as-is, and should therefore be XML
text.

headerdetail | None | Data, treated the same as the detail keyword, to be output in the SOAP
header. See the following paragraph.

If the fault occurred in the SOAP Header, the specification requires that the detail be sent back as an element
within the SOAP Header element. Unfortunately, the SOAP specification does not describe how to encode
this; ZST defines and uses a ZSI:detail element, which is analogous to the SOAP detail element.

The following attributes are read-only:

actor
A text string holding the value of the SOAP faultactor element.

code
A text string holding the value of the SOAP faultcode element.

detail

A text string or sequence of elements containing holding the value of the SOAP detail element, when avail-
able.

headerdetail
A text string or sequence of elements containing holding the value of the ZST header detail element, when
available.

string
A text string holding the value of the SOAP faultstring element.

AsSOAP ([, **%w|)
This method serializes the Fault object into a SOAP message. The message is returned as a string. Any

33

keyword arguments are passed to the SoapWriter constructor. New in version 1.1; the old AsSoap ()
method is still available.

If other data is going to be sent with the fault, the following two methods can be used. Because some data might need
to be output in the SOAP Header, serializing a fault is a two-step process.

DataForSOAPHeader ()
This method returns a text string that can be included as the header parameter for constructing a SoapWriter
object.

serialize (sw)
This method outputs the fault object onto the sw object, which is a SoapWriter instance.

Some convenience functions are available to create a Fault from common conditions.

FaultFromActor (uri[, actor])
This function could be used when an application receives a message that has a SOAP Header element directed
to an actor that cannot be processed. The uri parameter identifies the actor. The actor parameter can be used to
specify a URI that identifies the application, if it is not the ultimate recipient of the SOAP message.

FaultFromException (ex, inheader[, tb[, actor]])
This function creates a Fault from a general Python exception. A SOAP “server” fault is created. The ex
parameter should be the Python exception. The inheader parameter should be true if the error was found
on a SOAP Header element. The optional tb parameter may be a Python traceback object, as returned by
‘sys.exc_info () [2] . The actor parameter can be used to specify a URI that identifies the application, if
it is not the ultimate recipient of the SOAP message.

FaultFromFaultMessage (ps)
This function creates a Fault from a ParsedSoap object passed in as ps. It should only be used if the
IsAFault () method returned true.

FaultFromNotUnderstood (uri, localname, [actor])
This function could be used when an application receives a message with the SOAP mustUnderstand at-
tribute that it does not understand. The uri and localname parameters should identify the unknown element. The
actor parameter can be used to specify a URI that identifies the application, if it is not the ultimate recipient of
the SOAP message.

FaultFromZSIException (ex[, actor])
This function creates a Fault object from a ZST exception, ParseException or EvaluateException,
passed in as ex. A SOAP “client” fault is created. The actor parameter can be used to specify a URI that
identifies the application, if it is not the ultimate recipient of the SOAP message.

34 Chapter 8. The Fault module — reporting errors

CHAPTER
NINE

The resolvers module — fetching
remote data

The resolvers module provides some functions and classes that can be used as the resolver attribute for
TC.String or TC.XML typecodes. They process an absolute URL, as described above, and return the content.
Because the resolvers module can import a number of other large modules, it must be imported directly, as in
‘from ZSI import resolvers’.

These first two functions pass the URI directly to the ur lopen function in the ur11ib module. Therefore, if used
directly as resolvers, a client could direct the SOAP application to fetch any file on the network or local disk. Needless
to say, this could pose a security risks.

Opaque (uri, tc, ps[, **keywords])
This function returns the data contained at the specified uri as a Python string. Base-64 decoding will be done
if necessary. The t ¢ and ps parameters are ignored; the keywords are passed to the urlopen method.

XML (uri, tc, ps [, **keywords])
This function returns a list of the child element nodes of the XML document at the specified uri. The tc and
ps parameters are ignored; the keywords are passed to the ur 1 open method.

The NetworkResolver class provides a simple-minded way to limit the URI’s that will be resolved.

class NetworkResolver ([preﬁxeszNone])
The prefixes parameter is a list of strings defining the allowed prefixes of any URTI’s. If asked to fetch the
content for a URI that does start with one of the prefixes, it will raise an exception.

In addition to Opaque and XML methods, this class provides a Resolve method that examines the typecode
to determine what type of data is desired.

If the SOAP application is given a multi-part MIME document, the MIMEResolver class can be used to process
SOAP with Attachments.

The MIMEResolver class will read the entire multipart MIME document, noting any Content-ID or
Content-Location headers that appear on the headers of any of the message parts, and use them to resolve
any href attributes that appear in the SOAP message.

class MIMEResolver (ct, f [**keywords])
The ct parameter is a string that contains the value of the MIME Content-Type header. The f parameter is
the input stream, which should be positioned just after the message headers.

The following keyword arguments may be used:

35

Keyword Default | Description

seekable 0 Whether or not the input stream is seekable; passed to the constructor for
the internal multifile object. Changed in version 2.0: default had been
1.

next None | A resolver object that will be asked to resolve the URI if it is not found in
the MIME document. New in version 1.1.

uribase None | The base URI to be used when resolving relative URI’s; this will typically

be the value of the Content-Location header, if present. New in
version 1.1.

In addition to to the Opaque, Resolve, and XML methods as described above, the following method is available:

GetSOAPPart ()

This method returns a stream containing the SOAP message text.

The following attributes are read-only:

parts

An array of tuples,

one for each MIME bodypart found. Each tuple has two elements, a

mimetools.Message object which contains the headers for the bodypart, and a StringIO object con-

taining the data.

id_dict

A dictionary whose keys are the values of any Content—-ID headers, and whose value is the appropriate

parts tuple.

loc_dict

A dictionary whose keys are the values of any Content-Location headers, and whose value is the appro-

priate parts tuple.

36

Chapter 9. The resolvers module — fetching remote data

CHAPTER
TEN

Dispatching and Invoking

New in version 1.1.

ZS1 is focused on parsing and generating SOAP messages, and provides limited facilities for dispatching to the appro-
priate message handler. This is because ZST works within many client and server environments, and the dispatching
styles for these different environments can be very different.

Nevertheless, ZST includes some dispatch and invocation functions. To use them, they must be explicitly imported, as
shown in the example at the start of this document.

The implementation (and names) of the these classes reflects the orientation of using SOAP for remote procedure calls
(RPC).

Both client and server share a class that defines the mechanism a client uses to authenticate itself.

class AUTH ()
This class defines constants used to identify how the client authenticated: none if no authentication was pro-
vided; httpbasic if HTTP basic authentication was used, or zsibasic if ZSTI basic authentication (see
below)) was used.

The ZST schema (see the last chapter of this manual) defines a SOAP header element, BasicAuth, that contains a
name and password. This is similar to the HTTP basic authentication header, except that it can be used independently
from an HTTP transport.

10.1 Dispatching

The ZSI.dispatch module allows you to expose Python functions as a web service. The module provides the
infrastructure to parse the request, dispatch to the appropriate handler, and then serialize any return value back to the
client. The value returned by the function will be serialized back to the client. If an exception occurs, a SOAP fault
will be sent back to the client.

10.1.1 Dispatch Behaviors
By default the callback is invoked with the pyobj representation of the body root element, and it is expected to return

a self-describing request (w/typecode). Parsing is done via a typecode from typesmodule, or Any. Other keyword
options are available in dispatch mechanisms (see below) that result in different behavior.

rpc

An rpc service will ignore the body root (RPC Wrapper) of the request, and parse all ’parts” of message via individual
typecodes. The callback function is expected to return the parts of the message in a dict or a list. The dispatch

37

mechanism will try to serialize it as a Struct but if this is not possible it will be serialized as an Array. Parsing done
via a typecode from typesmodule, or Any. Not compatible with docstyle.

docstyle

Callback is invoked with a ParsedSoap instance representing the request, and the return value is serialized with an XML
typecode (DOM). The result in wrapped as an rpc-style message, with Response appended to the request wrapper. Not
compatible with rpc.

10.1.2 Special Modules

These are keyword options available to all dispatch mechansism (see below).

modules

Dispatch is based solely on the name of the root element in the incoming SOAP request; the request URL is ignored.
These modules will be search for a matching function. If no modules are specified, only the __main__ module will
be searched.

typesmodule

Used for parsing. This module should contain class definitions with the typecode attribute set to a TypeCode
instance. By default, a class definition matching the root element name will be retrieved or the Any typecode will be
used. If using rpc, each child of the root element will be used to retrieve a class definition of the same name.

10.1.3 Dispatch Mechanisms

Three dispatch mechanisms are provided: one supports standard CGI scripts, one runs a dedicated server based on
the BaseHTTPServer module, and the third uses the JonPY package, http://jonpy.sourceforge.net,to
support FastCGI.

AsServer ([**keywords])
This creates a HTTP Server object with a request handler that only supports the “POST” method. Dispatch is
based solely on the name of the root element in the incoming SOAP request; the request URL is ignored.

The following keyword arguments may be used:

Keyword Default Description

port 80 Port to listen on.

addr rr Address to listen on.

docstyle False Exhibit the docstyle behavior.

rpc False Exhibit the rpc behavior.

modules (__main__,) | List of modules containing functions that can be invoked.

typesmodule | (__main__,) | This module is used for parsing, it contains class definitions that specify the
typecode attribute.

nsdict {} Namespace dictionary to send in the SOAP Envelope

AsCGI ([**keywords])
This method parses the CGI input and invokes a function that has the same name as the top-level SOAP request
element.

The following keyword arguments may be used:

38 Chapter 10. Dispatching and Invoking

Keyword Default Description

rpc False Exhibit the rpc behavior.

modules (__main__,) | Listof modules containing functions that can be invoked.

typesmodule | (__main__,) | This module is used for parsing, it contains class definitions that specify the
typecode attribute.

nsdict {} Namespace dictionary to send in the SOAP Envelope

AsHandler (request=None [, **keywords])
This method is used within a JonPY handler to do dispatch.

The following keyword arguments may be used:

Keyword Default Description

request None modpython HTTPRequest instance.

modules (__main__,) | List of modules containing functions that can be invoked.

docstyle False Exhibit the docstyle behavior.

rpc False Exhibit the rpc behavior.

typesmodule | (__main__,) | This module is used for parsing, it contains class definitions that specify the
typecode attribute.

nsdict {} Namespace dictionary to send in the SOAP Envelope

AsJonPy (request=None [**keywords])
This method is used within a JonPY handler to do dispatch.

The following keyword arguments may be used:

Keyword Default Description

request None jonpy Request instance.

modules (__main__,) | List of modules containing functions that can be invoked.

docstyle False Exhibit the docstyle behavior.

rpc False Exhibit the rpc behavior.

typesmodule | (__main__,) | This module is used for parsing, it contains class definitions that specify the
typecode attribute.

nsdict {} Namespace dictionary to send in the SOAP Envelope

The following code shows a sample use:

import Jjon.fcgi
from ZSI import dispatch
import MyHandler

class Handler (cgi.Handler) :
def process(self, req):
dispatch.AsJonPy (modules= (MyHandler,), request=req)

jon.fcgi.Server ({jon.fcgi.FCGI_RESPONDER: Handler}) .run()

10.1.4 Other Dispatch Stuff

GetClientBinding ()
More sophisticated scripts may want to use access the client binding object, which encapsulates all information
about the client invoking the script. This function returns None or the binding information, an object of type
ClientBinding, described below.

class ClientBinding(...)
This object contains information about the client. It is created internally by ZST.

10.1. Dispatching 39

GetAuth ()
This returns a tuple containing information about the client identity. The first element will be one of the constants
from the AUTH class described above. For HTTP or ZS T basic authentication, the next two elements will be the
name and password provided by the client.

GetNS ()
Returns the namespace URI that the client is using, or an empty string. This can be useful for versioning.

GetRequest ()
Returns the ParsedSoap object of the incoming request.

The following attribute is read-only:

environ
A dictionary of the environment variables. This is most useful when AsCGI () is used.

10.2 The client module — sending SOAP messages

ZST includes a module to connect to a SOAP server over HTTP, send requests, and parse the response. It is built on
the standard Python httplib and Cookie modules. It must be explicitly imported, as in ‘from ZSI.client
import AUTH,Binding’.

10.2.1 _Binding

class _Binding([**keywords])
This class encapsulates a connection to a server, known as a binding. A single binding may be used for multiple
RPC calls. Between calls, modifiers may be used to change the URL being posted to, etc.

Cookies are also supported; if a response comes back with a Set—Cookie header, it will be parsed and used
in subsequent interactions.

The following keyword arguments may be used:

Keyword Default Description

auth (AUTH.none,) A tuple with authentication information; the first
value should be one of the constants from the
AUTH class.

nsdict {1} Namespace dictionary to send in the SOAP
Envelope

soapaction re Value for the SOAPAct ion HTTP header.

readerclass None Class used to create DOM-creating XML readers;
see the description in the ParsedSoap class.

writerclass None ElementProxy Class used to create XML writers;
see the description in the SoapWriter class.

tracefile None An object with a write method, where packet
traces will be recorded.

transport HTTPConnection/HTTPSConnection | transport class

transdict {} keyword arguments for connection initialization

url n/a URL to post to.

wsAddressURI None URI, identifies the WS-Address specification to
use. By default it’s not used.

sig_handler None XML Signature handler, must sign and verify.

If using SSL, the cert_file and key_file keyword parameters may also be used. For details see the
documentation for the ht tplib module.

40 Chapter 10. Dispatching and Invoking

Once a _Binding object has been created, the following modifiers are available. All of them return the binding
object, so that multiple modifiers can be chained together.

AddHeader (header, value)
Output the specified header and value with the HTTP headers.

SetAuth (style, name, password)
The style should be one of the constants from the AUTH class described above. The remaining parameters will
vary depending on the sty le. Currently only basic authentication data of name and password are supported.

SetNS (uri)
Set the default namespace for the request to the specified uri.

SetURL (url)
Set the URL where the post is made to url.

ResetHeaders ()
Remove any headers that were added by AddHeader ().

The following attribute may also be modified:

trace
If this attribute is not None, it should be an object with a write method, where packet traces will be recorded.

Once the necessary parameters have been specified (at a minimum, the URL must have been given in the constructor
are through SetURL), invocations can be made.

RPC (url, opname, pyobyj, replytype:None[, **keywords])
This is the highest-level invocation method. It calls Send () to send pyob3j to the specified url to perform
the opname operation, and calls Receive () expecting to get a reply of the specified replytype.

This method will raise a TypeError if the response does not appear to be a SOAP message, or if is valid
SOAP but contains a fault.

Send (url, opname, pyboj [**keywords])
This sends the specified pyob j to the specified url, invoking the opname method. The url can be None if

it was specified in the Binding constructor or if Set URL has been called. See below for a shortcut version of
this method.

The following keyword arguments may be used:

Keyword Default Description

auth_header None String (containing presumably serialized XML) to
output as an authentication header.

SOAP Envelope nsdict {1} Namespace dictionary to send in the SOAP
Envelope

requesttypecode n/a Typecode specifying how to serialize the data.

soapaction Obtained from the Binding | Value for the SOAPAct ion HTTP header.

Methods are available to determine the type of response that came back:

IsSOAP ()

Returns true if the message appears to be a SOAP message. (Some servers return an HTML page under certain
error conditions.)

IsAFault ()
Returns true if the message is a SOAP fault.

Having determined the type of the message (or, more likely, assuming it was good and catching an exception if not),
the following methods are available to actually parse the data. They will continue to return the same value until another
message is sent.

ReceiveRaw ()

10.2. The client module — sending SOAP messages 41

Returns the unparsed message body.

ReceiveSoap ()
Returns a ParsedSOAP object containing the parsed message. Raises a TypeError if the message wasn’t
SOAP.

ReceiveFault ()
Returns a Fault object containing the SOAP fault message. Raises a TypeError if the message did not
contain a fault.

Receive (replytype=None)
Parses a SOAP message. The replytype specifies how to parse the data. If it s None, dynamic parsing
will be used, usually resulting in a Python list. If replytype is a Python class, then the class’s typecode
attribute will be used, otherwise replytype is taken to be the typecode to use for parsing the data.

Once a reply has been parsed (or its type examined), the following read-only attributes are available. Their values will
remain unchanged until another reply is parsed.

reply_ code
The HTTP reply code, a number.

reply headers
The HTTP headers, as amimetools object.

reply_msg
A text string containing the HTTP reply text.

10.2.2 Binding

If an attribute is fetched other than one of those described in _Binding, it is taken to be the opname of a remote
procedure, and a callable object is returned. This object dynamically parses its arguments, receives the reply, and
parses that.

class Binding ([**keywords])
For other keyword arguments see _Binding.
Keyword | Default | Description
typesmodule ‘ None ‘ See explanation in Dispatching

opname (*args)
Using this shortcut requires that the ur/ attribute is set, either throught the constructor or Set URL () .

10.2.3 NamedParamBinding

If an attribute is fetched other than one of those described in _Binding, it is taken to be the opname of a remote
procedure, and a callable object is returned. This object dynamically parses its arguments, receives the reply, and
parses that.

class NamedParamBinding ([*kkeywords])
For other keyword arguments see _Binding.
Keyword | Default | Description
typesmodule | None | See explanation in Dispatching

opname (**kwargs)
Using this shortcut requires that the ur/ attribute is set, either throught the constructor or Set URL () .

42 Chapter 10. Dispatching and Invoking

CHAPTER
ELEVEN

Bibliography

43

44

BIBLIOGRAPHY

[1] This is the first item in the Bibliography.

[2] This is the second item in the Bibliography.

45

46

APPENDIX
A

CGl Script Array

A.1 Intro

This is an example of a simple web service CGI Script. The service returns and expects SOAP Arrays (python 1ist).
A sample soap trace is provided below. In this example the CGI script is dispatched as a rpc service.

A.1.1 rpc wrapper

The wrapper element of the request is the dispatch key to the callback function, the child elements are passes as a
list or dict of values to the callback function. The callback function is expected to return a 1ist or dict of
values, the response wrapper is by default set to the request wrapper name appended Response.

A.2 CGl Script

#!/usr/local/bin/python2.4
SOAP Array

def hello():
return ["Hello, world"]

def echo(xargs):
return args

def sum(xargs):
sum = 0
for 1 in args: sum += i
return [sum]

def average (xargs):
return [sum(*args) / len(args)]

from ZSI import dispatch
dispatch.AsCGI (rpc=True)

47

A.3 client test script

#!/usr/bin/env python
client.py
import sys
from ZSI.client import Binding
b = Binding (url='http://127.0.0.1/cgi-bin/simple’, tracefile=sys.stdout)
print b.hello()
try:
print b.hello (1)
except Exception, ex:
print "Fault: ", ex

print b.echo ("whatever", "hi", 1, 2)
print b.sum(*[2x1 for i in range(5)])
print b.average (x[2+«1 for i in range(5)])

A.4 SOAP Trace

A.4.1 hello

$./client.py

Hello: Wed Oct 4 17:36:33 2006 REQUEST:
<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ZSI="http://www.zolera.com/schemas/zSI/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema—-instance"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Header></SOAP-ENV:Header>

<SOAP-ENV:Body>

<hello SOAP-ENC:arrayType="xsd:anyType[0]"></hello>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Wed Oct 4 17:36:34 2006 RESPONSE:

200

<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ZSI="http://www.zolera.com/schemas/zSI/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<SOAP-ENV:Header></SOAP-ENV:Header>

<SOAP-ENV:Body>

<helloResponse SOAP-ENC:arrayType="xsd:anyType[l]">

<element i1d="0671b0" xsi:type="xsd:string">Hello, world</element>
</helloResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

[u"Hello, world’]

48 Appendix A. CGlI Script Array

A.4.2 hello fault

Wed Oct 4 17:36:34 2006 REQUEST:
<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ZSI="http://www.zolera.com/schemas/zSI/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Header></SOAP-ENV:Header>

<SOAP-ENV:Body>

<hello SOAP-ENC:arrayType="xsd:anyType[l]">

<element id="01803988" xsi:type="xsd:int">1</element>

</hello>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Wed Oct 4 17:36:35 2006 RESPONSE:

500

<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ZSI="http://www.zolera.com/schemas/zZSI/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<SOAP-ENV:Header></SOAP-ENV:Header>

<SOAP-ENV:Body>

<SOAP-ENV:Fault>

<faultcode>SOAP-ENV:Server</faultcode>

<faultstring>Processing Failure</faultstring>

<detail>

<ZSI:FaultDetail>

<ZSI:string>exceptions:TypeError hello() takes no arguments (1 given)</ZSI:string>
<ZSI:trace>build/bdist.darwin-8.8.0-Power_Macintosh/egg/ZSI/dispatch.py:86:_Dispatch</ZSI:trace>
</ZSI:FaultDetail>

</detail>

</SOAP-ENV:Fault>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Fault: Processing Failure

exceptions:TypeError

hello () takes no arguments (1 given)

[trace: build/bdist.darwin-8.8.0-Power_Macintosh/egg/ZSI/dispatch.py:86:_Dispatch]

A.4. SOAP Trace 49

A.4.3 echo

Wed Oct 4 17:36:35 2006 REQUEST:
<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ZSI="http://www.zolera.com/schemas/zSI/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Header></SOAP-ENV:Header>

<SOAP-ENV:Body>

<echo SOAP-ENC:arrayType="xsd:anyType[4]">

<element id="0644c0" xsi:type="xsd:string">whatever</element>
<element id="o0644e0" xsi:type="xsd:string">hi</element>

<element 1d="01803988" xsi:type="xsd:int">1</element>

<element id="0180397c" xsi:type="xsd:int">2</element>

</echo>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Wed Oct 4 17:36:36 2006 RESPONSE:

200

<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ZSI="http://www.zolera.com/schemas/zZSI/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<SOAP-ENV:Header></SOAP-ENV:Header>

<SOAP-ENV:Body>

<echoResponse SOAP-ENC:arrayType="xsd:anyType[4]">

<element id="04f4290" xsi:type="xsd:string">whatever</element>
<element 1d="04f4338" xsi:type="xsd:string">hi</element>
<element 1d="01803988" xsi:type="xsd:int">1</element>

<element id="0180397c" xsi:type="xsd:int">2</element>
</echoResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

[u’whatever’, u’hi’, 1, 2]

50 Appendix A. CGl Script Array

A.4.4 sum

Wed Oct 4 17:36:36 2006 REQUEST:
<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ZSI="http://www.zolera.com/schemas/zSI/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Header></SOAP-ENV:Header>

<SOAP-ENV:Body>

<sum SOAP-ENC:arrayType="xsd:anyType[5]">

<element id="01803994" xsi:type="xsd:int">0</element>

<element id="0180397c" xsi:type="xsd:int">2</element>

<element 1d="01803964" xsi:type="xsd:int">4</element>

<element i1id="0180394c" xsi:type="xsd:int">6</element>

<element id="01803934" xsi:type="xsd:int">8</element>

</sum>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Wed Oct 4 17:36:37 2006 RESPONSE:

200

<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ZSI="http://www.zolera.com/schemas/zZSI/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema—-instance">
<SOAP-ENV:Header></SOAP-ENV:Header>

<SOAP-ENV:Body>

<sumResponse SOAP-ENC:arrayType="xsd:anyType[l]">

<element 1d="018038a4" xsi:type="xsd:int">20</element>
</sumResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

[20]

A.4. SOAP Trace

51

A.4.5 average

Wed Oct 4 17:36:37 2006 REQUEST:
<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ZSI="http://www.zolera.com/schemas/zSI/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Header></SOAP-ENV:Header>

<SOAP-ENV:Body>

<average SOAP-ENC:arrayType="xsd:anyTypel[5]">

<element id="01803994" xsi:type="xsd:int">0</element>

<element id="0180397c" xsi:type="xsd:int">2</element>

<element 1d="01803964" xsi:type="xsd:int">4</element>

<element i1id="0180394c" xsi:type="xsd:int">6</element>

‘<element 1d="01803934" xsi:type="xsd:int">8</element>

</average>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Wed Oct 4 17:36:38 2006 RESPONSE:

200

<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ZSI="http://www.zolera.com/schemas/zZSI/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema—-instance">
<SOAP-ENV:Header></SOAP-ENV:Header>

<SOAP-ENV:Body>

<averageResponse SOAP-ENC:arrayType="xsd:anyType[l]">
<element 1d="01803964" xsi:type="xsd:int">4</element>
</averageResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

[41]

52 Appendix A. CGl Script Array

APPENDIX
B

CGl Script Struct

B.1 Intro

This is an example of a simple web service CGI Script. The service returns and expects SOAP Structs (python dict).
A sample soap trace is provided below. In this example the CGI script is dispatched as a rpc service.

B.1.1 rpc wrapper

The wrapper element of the request is the dispatch key to the callback function, the child elements are passes as a
list or dict of values to the callback function. The callback function is expected to return a 1ist or dict of
values, the response wrapper is by default set to the request wrapper name appended Response.

B.2 CGl Script

#!/usr/local/bin/python2.4
SOAP Struct

def hello():
return {"value":"Hello, world"}

def echo (*x*kw) :
return kw

def sum(x*kw) :

sum = 0

for i in kw.values(): sum += i
return {"value":sum}

def average (xxkw) :
d = sum(*x*kw)
return d["value"] = d["value"]/len (kw)

from ZSI import dispatch
dispatch.AsCGI (rpc=True)

53

B.3

client test script

#!/usr/bin/env python
import sys,time
from ZSI.client import NamedParamBinding as NPBinding

b = NPBinding (url="http://127.0.0.1/cgi-bin/soapstruct’,

print
print
print
print

B.4

B.4.1

"Hello: ", b.hello()

"Echo: ", b.echo(name="josh", year=2006,
"Sum: ", b.sum(one=1, two=2, three=3)

"Average: ", b.average (one=100,

SOAP Trace

hello

two=200,

tracefile=sys.stdout)

pi=3.14, time=time.gmtime ())

three=300,

four=400)

54

Appendix B. CGl Script Struct

APPENDIX

C

Complete Low Level Example

C.1 Intro

This is a complete example of using the low level soap utilities in ZSTI to implement a web service.

C.2 code

C.2.1 httpserver script

Minimal http server example, opens up a new process to do the SOAP processing.

#!/usr/bin/env python

file: httpserver.py

import os

from subprocess import Popen, PIPE

from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer

class RequestHandler (BaseHTTPRequestHandler) :
def do_POST (self):
length = int (self.headers[’content—-length’])
xml_in = self.rfile.read(length)
p = Popen(os.path.join(os.path.curdir, ’'player.py’),
shell=True, stdin=PIPE, stdout=PIPE)

(stdout, stderr) = p.communicate (xml_in)

code = 200

if stdout.find(’Fault’) >= 0: code = 500

self.send_response (code)

self.send_header (' Content-type’, ’text/xml; charset="utf-8"’")

self.send_header (' Content-Length’, str(len(stdout)))

self.end_headers(

self.wfile.write (
(

)
stdout)
self.wfile.flush ()

if _ name_ == '_ _main__ ':
server = HTTPServer ((’localhost’, 8080), RequestHandler)

server.serve_forever ()

55

C.2.2 typecode module

file: typecode.py
CHECK PYTHONPATH: Must be able to import
class Player:
def __init__ (self, =xargs):
if not len(args): return
self.Name = args|[0]
self.Scores = args[l:]
Player.typecode = TC.Struct (Player, [
TC.String (' Name’),

TC.Array (' Integer’, TC.Integer(),
1, 'GetAverage’)
class Average:
def __init__ (self, average=None):
self.average = average

Average.typecode = TC.Struct (Average, [
TC.Integer (’average’),
1, ’'GetAverageResponse’)

’Scores’,

undeclared=True),

56 Appendix C. Complete Low Level Example

C.2.3 player script

#!/usr/bin/env python

file: player.py

from ZSI import =

import sys

IN, OUT = sys.stdin, sys.stdout

try:
ps = ParsedSoap (IN)

except ParseException, e:
OUT.write (FaultFromZSIException (e) .AsSOAP ())
sys.exit (1)

except Exception, e:
Faulted while processing; we assume it’s in the header.
OUT.write (FaultFromException(e, 1) .AsSOAP())
sys.exit (1)

We are not prepared to handle any actors or mustUnderstand elements,
so we’ll arbitrarily fault back with the first one we found.
a = ps.WhatActorsArePresent ()
if len(a):
OUT.write (FaultFromActor (a[0]) .AsSOAP ())
sys.exit (1)
mu = ps.WhatMustIUnderstand()
if len (mu) :
uri, localname = mul[0]
OUT.write (FaultFromNotUnderstood (uri, localname) .AsSOAP ())
sys.exit (1)

from typecode import Player, Average

try:
player = ps.Parse(Player.typecode)

except EvaluateException, e:
OUT.write (FaultFromZSIException (e) .AsSOAP ())
sys.exit (1)

try:
total = 0
for value in player.Scores: total = total + value
result = Average (total / len(player.Scores))
sw = SoapWriter ()
sw.serialize (result, Average.typecode)
sw.close ()
OUT.write (str (sw))
except Exception, e:
OUT.write (FaultFromException(e, 0, sys.exc_info () [2]).AsSOAP())
sys.exit (1)

C.2. code

57

C.2.4 client test script

#!/usr/bin/env python2.4

#file: client.py

from ZSI import =

from ZSI.wstools.Namespaces import SCHEMA
from typecode import Player, Average

if __name_ == '__ main__ ':

import sys

from ZSI.client import Binding
b =
pyobj = b.RPC (None,
print pyobj

print pyobj.__dict_

None,

Binding (url="http://localhost:8080"’
Player ("Josh", 10,20, 30),

14

tracefile=sys.stdout)
replytype=Average)

58

Appendix C. Complete Low Level Example

C.3 SOAP Trace

C.3.1 GetAverage

$./client.py

Thu Oct 5 14:57:39 2006 REQUEST:
<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ZSI="http://www.zolera.com/schemas/zZSI/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<SOAP-ENV:Header></SOAP-ENV:Header>

<SOAP-ENV:Body>

<GetAverage>

<Name xsi:type="xsd:string">Josh</Name>

<Scores>

<element>10</element>

<element>20</element>

<element>30</element>

</Scores>

</GetAverage>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Thu Oct 5 14:57:39 2006 RESPONSE:

200

OK

Server: BaseHTTP/0.3 Python/2.5

Date: Thu, 05 Oct 2006 21:57:39 GMT
Content-type: text/xml; charset="utf-8"
Content-Length: 431

<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ZSI="http://www.zolera.com/schemas/zSI/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<SOAP-ENV:Header></SOAP-ENV:Header>

<SOAP-ENV:Body>

<GetAverageResponse>

<average>20</average>

</GetAverageResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

<__main__ .Average instance at 0x5f£9760>
{"average’: 20}

C.3.2 fault

Purposely send a incorrect Nae element for the Name.

C.3. SOAP Trace

59

$./client.py
Thu Oct 5 14:33:25 2006 REQUEST:

<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ZSI="http://www.zolera.com/schemas/zZSI/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<SOAP-ENV:Header></SOAP-ENV:Header>

<SOAP-ENV:Body>

<GetAverage>

<Nae xsi:type="xsd:string">Josh</Nae>

<Scores>

<element>10</element>

<element>20</element>

<element>30</element>

</Scores>

</GetAverage>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Thu Oct 5 14:33:26 2006 RESPONSE:

500
Internal Server Error

<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ZSI="http://www.zolera.com/schemas/zZSI/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<SOAP-ENV:Header></SOAP-ENV:Header>
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Client</faultcode>
<faultstring>Unparseable message</faultstring>
<detail><Eoe440><ZSI:ParseFaultDetails>
&1t;ZSI:string>Element "Name" missing from complexType</ZSI:string>
&1t;ZSI:trace> /SOAP-ENV:Envelope/SOAP-ENV:Body/GetAverage< /ZSI:traces>
&1t; /ZSI:ParseFaultDetail></Eoedd40></detail>
</SOAP-ENV:Fault>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
Traceback (most recent call last):

File "./player_client.py", line 25, in ?

pyobj = b.RPC(None, None, Player ("Josh",10,20,30), replytype=Average)
File "/private/var/www/htdocs/guide/client.py", line 176, in RPC

File "/private/var/www/htdocs/guide/client.py", line 420, in Receive

ZSI.FaultException: Unparseable message
<Element Node at 5f9f58: Name='Eoce440’ with 0 attributes and 1 children>

60

Appendix C. Complete Low Level Example

APPENDIX
D

Pickler example

D.1 Intro

This is an example of a stateful mod_python web service.

D.2 code

D.2.1 typecode module

Module containing complex type typecode.

Complex type definition
from ZSI import =
class Person:
def __init_ (self, name=None, age=0):
self.name = name
self.age = age

Person.typecode = TC.Struct (Person,
[TC.String (' name’),

TC.InonNegativelnteger (’age’)],

pname= (’urn:MyApp’,’'Person’))

D.2.2 pickler script

Configure appache to use this script with mod_python PythonHandler.

61

pickler.py

import pickle, new

from mod_python import apache
from ZSI import dispatch
import MyComplexTypes

my web service that returns a complex structure
def getPerson (name=None) :
#fp = open(’/tmp/%$s.person.pickle’ $Person.name, ’'r’)
fp = open(’/tmp/%s.person.pickle’ $name, ’'r’)
#return pickle.load (fp)
p = pickle.load(fp)
print "PERSON: ", p
print "typecode: ", p.typecode
return p

my web service that accepts a complex structure
def savePerson (Person) :
print "PERSON: ", Person

fp = open(’/tmp/%$s.person.pickle’ $Person.name, ’'w’)
pickle.dump (Person, fp)
fp.close ()

return {}

mod = __import__ ("encodings.utf_8’, globals(), locals(), 'x")
mod = __import__ (’encodings.utf_16_be’, globals(), locals(), "*')
handles = new.module (' handles’)

handles.getPerson = getPerson

handles.savePerson = savePerson

def handler (req):
dispatch.AsHandler (modules= (handles,), request=req, typesmodule=MyComplexTypes, rpc=True)

return apache.OK

D.2.3 client: invoke savePerson

script

import sys
from ZSI.client import Binding
from MyComplexTypes import Person

b = Binding (url='"http://localhost/test3/pickler.py’, tracefile=sys.stdout)
person = Person (’christopher’, 26)
b.savePerson (person)

62 Appendix D. pickler example

SOAP Trace

Wed Oct 11 13:10:05 2006 REQUEST:
<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ZSI="http://www.zolera.com/schemas/zSI/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Header></SOAP-ENV:Header>

<SOAP-ENV:Body>

<savePerson xmlns:nsl="urn:MyApp">

<nsl:Person><name xsi:type="xsd:string">christopher</name>

<age xsi:type="xsd:nonNegativeInteger">26</age>

</nsl:Person>

</savePerson>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Wed Oct 11 13:10:05 2006 RESPONSE:
Server: Apache/2.0.53-dev (Unix) mod_ruby/1.2.4 Ruby/1.8.2(2004-12-25)
mod_python/3.1.4 Python/2.4.1

Transfer-Encoding: chunked

Content-Type: text/xml

<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ZSI="http://www.zolera.com/schemas/ZSI/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<SOAP-ENV:Header></SOAP-ENV:Header>

<SOAP-ENV:Body>

<savePersonResponse></savePersonResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

D.2. code

D.2.4 client: invoke getPerson 3 different ways

script

import sys

import MyComplexTypes

from ZSI.client import NamedParamBinding as NPBinding, Binding
from ZSI import TC

kw = {’url’:’http://localhost/test3/pickler.py’, ’tracefile’:sys.stdout}
b = NPBinding (**xkw)

rsp = b.getPerson (name=’christopher’)

assert type(rsp) is dict, ’'expecting a dict’

assert rsp[’Person’][’name’] == ’christopher’, ’'wrong person’

b = NPBinding (typesmodule=MyComplexTypes, xxkw)

rsp = b.getPerson (name=’'christopher’)

assert isinstance(rspl[’Person’], MyComplexTypes.Person), (
"expecting instance of %s’ $MyComplexTypes.Person)

b = Binding (typesmodule=MyComplexTypes, **kw)
class Name (str) :
typecode = TC.String("name")

rsp = b.getPerson (Name (' christopher’))

assert isinstance(rspl[’Person’], MyComplexTypes.Person), (
"expecting instance of %s’ $MyComplexTypes.Person)

SOAP Trace

All responses are exactly the same, for comparison the three requests are presented first and only the last response is
included.

64 Appendix D. pickler example

Wed Oct 11 13:19:00 2006 REQUEST:
<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ZSI="http://www.zolera.com/schemas/zZSI/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Header></SOAP-ENV:Header>

<SOAP-ENV:Body>

<getPerson>

<name id="o06c2al0" xsi:type="xsd:string">christopher</name>
</getPerson>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

*x OMIT RESPONSE *x

Wed Oct 11 13:19:00 2006 REQUEST:
<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ZSI="http://www.zolera.com/schemas/zZSI/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Header></SOAP-ENV:Header>

<SOAP-ENV:Body>

<getPerson>

<name id="o06c2a0" xsi:type="xsd:string">christopher</name>
</getPerson>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

**x OMIT RESPONSE xx%

Wed Oct 11 13:19:00 2006 REQUEST:
<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ZSI="http://www.zolera.com/schemas/zZSI/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema—-instance"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Header></SOAP-ENV:Header>

<SOAP-ENV:Body>

<getPerson>

<name xsi:type="xsd:string">christopher</name>

</getPerson>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Wed Oct 11 13:19:00 2006 RESPONSE:
Server: Apache/2.0.53-dev (Unix) mod_ruby/1.2.4 Ruby/1.8.2(2004-12-25)
mod_python/3.1.4 Python/2.4.1
Transfer-Encoding: chunked
Content-Type: text/xml

<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ZSI="http://www.zolera.com/schemas/zZSI/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"

1 =N . 2 "

D.2. cederp-ENV:Header></SOAP-ENV:Header> 65
<SOAP-ENV:Body>
<getPersonResponse xmlns:nsl="urn:MyApp">
<nsl:Person>

L SRR | SR, (U SRR | SO FR L S T SR

	1 Introduction
	1.1 How to Read this Document

	2 Examples
	2.1 Server Side Examples
	2.1.1 Simple example
	2.1.2 low level soap processing example
	2.1.3 A modunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip python example

	2.2 Client Side Examples
	2.2.1 Simple Example
	2.2.2 Complex Example: pickler.py

	3 Exceptions
	4 Utilities
	4.1 Low-Level Utilities

	5 The ParsedSoap module --- basic message handling
	6 The TypeCode classes --- data conversions
	6.1 TC.TypeCode
	6.2 TC.Any --- the basis of dynamic typing
	6.2.1 simple data
	6.2.2 compound data
	6.2.3 class description
	6.2.4 Adding new types

	6.3 TC.SimpleType
	6.4 Strings
	6.5 Integers
	6.6 Floating-point Numbers
	6.7 Dates and Times
	6.8 Boolean
	6.9 XML
	6.10 ComplexType
	6.11 Struct
	6.12 Arrays
	6.13 Apache Datatype

	7 The SoapWriter module --- serializing data
	8 The Fault module --- reporting errors
	9 The resolvers module --- fetching remote data
	10 Dispatching and Invoking
	10.1 Dispatching
	10.1.1 Dispatch Behaviors
	rpc
	docstyle

	10.1.2 Special Modules
	modules
	typesmodule

	10.1.3 Dispatch Mechanisms
	10.1.4 Other Dispatch Stuff

	10.2 The client module --- sending SOAP messages
	10.2.1 unhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip Binding
	10.2.2 Binding
	10.2.3 NamedParamBinding

	11 Bibliography
	A CGI Script Array
	A.1 Intro
	A.1.1 rpc wrapper

	A.2 CGI Script
	A.3 client test script
	A.4 SOAP Trace
	A.4.1 hello
	A.4.2 hello fault
	A.4.3 echo
	A.4.4 sum
	A.4.5 average

	B CGI Script Struct
	B.1 Intro
	B.1.1 rpc wrapper

	B.2 CGI Script
	B.3 client test script
	B.4 SOAP Trace
	B.4.1 hello

	C Complete Low Level Example
	C.1 Intro
	C.2 code
	C.2.1 httpserver script
	C.2.2 typecode module
	C.2.3 player script
	C.2.4 client test script

	C.3 SOAP Trace
	C.3.1 GetAverage
	C.3.2 fault

	D pickler example
	D.1 Intro
	D.2 code
	D.2.1 typecode module
	D.2.2 pickler script
	D.2.3 client: invoke savePerson
	script
	SOAP Trace

	D.2.4 client: invoke getPerson 3 different ways
	script
	SOAP Trace

