bzip2 and libbzip2

a program and library for data compression
copyright (C) 1996-2002 Julian Seward
version 1.0.2 of 30 December 2001

Julian Seward

The following text is the License for this software. You should find it identical to that
contained in the file LICENSE in the source distribution.

START OF THE LICENSE

This program, bzip2, and associated library 1ibbzip2, are Copyright (C) 1996-2002 Julian
R Seward. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

e Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

e The origin of this software must not be misrepresented; you must not claim that you
wrote the original software. If you use this software in a product, an acknowledgment
in the product documentation would be appreciated but is not required.

e Altered source versions must be plainly marked as such, and must not be misrepre-
sented as being the original software.

e The name of the author may not be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CON-
SEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Julian Seward, Cambridge, UK.

jseward@acm.org

bzip2/1libbzip2 version 1.0.2 of 30 December 2001.
END OF THE LICENSE —————

Web sites:
http://sources.redhat.com/bzip2
http://www.cacheprof.org

PATENTS: To the best of my knowledge, bzip2 does not use any patented algorithms.
However, I do not have the resources available to carry out a full patent search. Therefore
I cannot give any guarantee of the above statement.

Chapter 1: Introduction 2

1 Introduction

bzip2 compresses files using the Burrows-Wheeler block-sorting text compression algo-
rithm, and Huffman coding. Compression is generally considerably better than that
achieved by more conventional LZ77/LZ78-based compressors, and approaches the per-
formance of the PPM family of statistical compressors.

bzip2 is built on top of 1ibbzip2, a flexible library for handling compressed data in the
bzip2 format. This manual describes both how to use the program and how to work with
the library interface. Most of the manual is devoted to this library, not the program, which
is good news if your interest is only in the program.

Chapter 2 describes how to use bzip2; this is the only part you need to read if you
just want to know how to operate the program. Chapter 3 describes the programming
interfaces in detail, and Chapter 4 records some miscellaneous notes which I thought ought
to be recorded somewhere.

Chapter 2: How to use bzip2

2 How to use bzip2

This chapter contains a copy of the bzip2 man page, and nothing else.

NAME

bzip2, bunzip?2 - a block-sorting file compressor, v1.0.2
bzcat - decompresses files to stdout
bzip2recover - recovers data from damaged bzip2 files

SYNOPSIS

bzip2 [-cdfkqstvzVL123456789 | [filenames ... |
bunzip? [-fkvsVL | [filenames ...]
bzcat [-s | [filenames ...]

bzip2recover filename

DESCRIPTION

bzip2 compresses files using the Burrows-Wheeler block sorting text compres-
sion algorithm, and Huffman coding. Compression is generally considerably
better than that achieved by more conventional LZ77/LZ78-based compressors,
and approaches the performance of the PPM family of statistical compressors.

The command-line options are deliberately very similar to those of GNU gzip,
but they are not identical.

bzip2 expects a list of file names to accompany the command-line flags. Each
file is replaced by a compressed version of itself, with the name original_
name.bz2. Each compressed file has the same modification date, permissions,
and, when possible, ownership as the corresponding original, so that these
properties can be correctly restored at decompression time. File name han-
dling is naive in the sense that there is no mechanism for preserving original
file names, permissions, ownerships or dates in filesystems which lack these
concepts, or have serious file name length restrictions, such as MS-DOS.

bzip2 and bunzip2 will by default not overwrite existing files. If you want this
to happen, specify the -f flag.

If no file names are specified, bzip2 compresses from standard input to stan-
dard output. In this case, bzip2 will decline to write compressed output to a
terminal, as this would be entirely incomprehensible and therefore pointless.

bunzip2 (or bzip2 -d) decompresses all specified files. Files which were not
created by bzip2 will be detected and ignored, and a warning issued. bzip2
attempts to guess the filename for the decompressed file from that of the com-
pressed file as follows:

filename.bz2 becomes filename
filename.bz becomes filename

Chapter 2: How to use bzip2

filename.tbz2 becomes filename.tar
filename.tbz becomes filename.tar

anyothername becomes anyothername.out

If the file does not end in one of the recognised endings, .bz2, .bz, .tbz2 or
.tbz, bzip2 complains that it cannot guess the name of the original file, and
uses the original name with .out appended.

As with compression, supplying no filenames causes decompression from stan-
dard input to standard output.

bunzip2 will correctly decompress a file which is the concatenation of two or
more compressed files. The result is the concatenation of the corresponding
uncompressed files. Integrity testing (-t) of concatenated compressed files is
also supported.

You can also compress or decompress files to the standard output by giving
the -c flag. Multiple files may be compressed and decompressed like this.
The resulting outputs are fed sequentially to stdout. Compression of multiple
files in this manner generates a stream containing multiple compressed file
representations. Such a stream can be decompressed correctly only by bzip2
version 0.9.0 or later. Earlier versions of bzip2 will stop after decompressing
the first file in the stream.

bzcat (or bzip2 -dc) decompresses all specified files to the standard output.

bzip2 will read arguments from the environment variables BZIP2 and BZIP, in
that order, and will process them before any arguments read from the command
line. This gives a convenient way to supply default arguments.

Compression is always performed, even if the compressed file is slightly larger
than the original. Files of less than about one hundred bytes tend to get larger,
since the compression mechanism has a constant overhead in the region of 50
bytes. Random data (including the output of most file compressors) is coded
at about 8.05 bits per byte, giving an expansion of around 0.5%.

As a self-check for your protection, bzip2 uses 32-bit CRCs to make sure that
the decompressed version of a file is identical to the original. This guards
against corruption of the compressed data, and against undetected bugs in
bzip2 (hopefully very unlikely). The chances of data corruption going unde-
tected is microscopic, about one chance in four billion for each file processed.
Be aware, though, that the check occurs upon decompression, so it can only
tell you that something is wrong. It can’t help you recover the original uncom-
pressed data. You can use bzip2recover to try to recover data from damaged
files.

Return values: 0 for a normal exit, 1 for environmental problems (file not
found, invalid flags, I/O errors, &c), 2 to indicate a corrupt compressed file, 3
for an internal consistency error (eg, bug) which caused bzip2 to panic.

OPTIONS

Chapter 2: How to use bzip2

-c —--stdout
Compress or decompress to standard output.

-d —-decompress
Force decompression. bzip2, bunzip2 and bzcat are really the
same program, and the decision about what actions to take is done
on the basis of which name is used. This flag overrides that mech-
anism, and forces bzip2 to decompress.

-Z —-compress
The complement to -d: forces compression, regardless of the in-
vokation name.

-t ——test Check integrity of the specified file(s), but don’t decompress them.
This really performs a trial decompression and throws away the
result.

-f —-force
Force overwrite of output files. Normally, bzip2 will not overwrite
existing output files. Also forces bzip2 to break hard links to files,
which it otherwise wouldn’t do.

bzip2 normally declines to decompress files which don’t have the
correct magic header bytes. If forced (-f), however, it will pass
such files through unmodified. This is how GNU gzip behaves.

-k —-keep Keep (don’t delete) input files during compression or decompres-
sion.

-s —-small
Reduce memory usage, for compression, decompression and test-
ing. Files are decompressed and tested using a modified algorithm
which only requires 2.5 bytes per block byte. This means any file
can be decompressed in 2300k of memory, albeit at about half the
normal speed.

During compression, -s selects a block size of 200k, which limits
memory use to around the same figure, at the expense of your
compression ratio. In short, if your machine is low on memory (8
megabytes or less), use -s for everything. See MEMORY MAN-
AGEMENT below.
-q --quiet

Suppress non-essential warning messages. Messages pertaining to
I/0 errors and other critical events will not be suppressed.

-v --verbose
Verbose mode — show the compression ratio for each file processed.
Further -v’s increase the verbosity level, spewing out lots of infor-
mation which is primarily of interest for diagnostic purposes.

-L --license -V —-version
Display the software version, license terms and conditions.

-1 (or --fast) to -9 (or --best)
Set the block size to 100 k, 200 k .. 900 k when compressing. Has
no effect when decompressing. See MEMORY MANAGEMENT

Chapter 2: How to use bzip2

below. The --fast and --best aliases are primarily for GNU
gzip compatibility. In particular, --fast doesn’t make things sig-
nificantly faster. And --best merely selects the default behaviour.

- Treats all subsequent arguments as file names, even if they start
with a dash. This is so you can handle files with names beginning
with a dash, for example: bzip2 -- -myfilename.

--repetitive-fast

--repetitive-best
These flags are redundant in versions 0.9.5 and above. They pro-
vided some coarse control over the behaviour of the sorting algo-
rithm in earlier versions, which was sometimes useful. 0.9.5 and
above have an improved algorithm which renders these flags irrel-
evant.

MEMORY MANAGEMENT

bzip2 compresses large files in blocks. The block size affects both the compres-
sion ratio achieved, and the amount of memory needed for compression and
decompression. The flags -1 through -9 specify the block size to be 100,000
bytes through 900,000 bytes (the default) respectively. At decompression time,
the block size used for compression is read from the header of the compressed
file, and bunzip2 then allocates itself just enough memory to decompress the
file. Since block sizes are stored in compressed files, it follows that the flags -1
to -9 are irrelevant to and so ignored during decompression.

Compression and decompression requirements, in bytes, can be estimated as:

Compression: 400k + (8 x block size)

Decompression: 100k + (4 x block size), or
100k + (2.5 x block size)

Larger block sizes give rapidly diminishing marginal returns. Most of the com-
pression comes from the first two or three hundred k of block size, a fact worth
bearing in mind when using bzip2 on small machines. It is also important to
appreciate that the decompression memory requirement is set at compression
time by the choice of block size.

For files compressed with the default 900k block size, bunzip2 will require
about 3700 kbytes to decompress. To support decompression of any file on a 4
megabyte machine, bunzip2 has an option to decompress using approximately
half this amount of memory, about 2300 kbytes. Decompression speed is also
halved, so you should use this option only where necessary. The relevant flag
is -s.

In general, try and use the largest block size memory constraints allow, since
that maximises the compression achieved. Compression and decompression
speed are virtually unaffected by block size.

Another significant point applies to files which fit in a single block — that means
most files you’d encounter using a large block size. The amount of real memory

Chapter 2: How to use bzip2

touched is proportional to the size of the file, since the file is smaller than a
block. For example, compressing a file 20,000 bytes long with the flag -9 will
cause the compressor to allocate around 7600k of memory, but only touch 400k
+ 20000 * 8 = 560 kbytes of it. Similarly, the decompressor will allocate 3700k
but only touch 100k + 20000 * 4 = 180 kbytes.

Here is a table which summarises the maximum memory usage for different
block sizes. Also recorded is the total compressed size for 14 files of the Cal-
gary Text Compression Corpus totalling 3,141,622 bytes. This column gives
some feel for how compression varies with block size. These figures tend to
understate the advantage of larger block sizes for larger files, since the Corpus
is dominated by smaller files.

Compress Decompress Decompress Corpus

Flag usage usage -s usage Size
-1 1200k 500k 350k 914704
-2 2000k 900k 600k 877703
-3 2800k 1300k 850k 860338
-4 3600k 1700k 1100k 846899
-5 4400k 2100k 1350k 845160
-6 5200k 2500k 1600k 838626
=7 6100k 2900k 1850k 834096
-8 6800k 3300k 2100k 828642
-9 7600k 3700k 2350k 828642

RECOVERING DATA FROM DAMAGED FILES

bzip2 compresses files in blocks, usually 900kbytes long. Each block is handled
independently. If a media or transmission error causes a multi-block .bz2 file
to become damaged, it may be possible to recover data from the undamaged
blocks in the file.

The compressed representation of each block is delimited by a 48-bit pattern,
which makes it possible to find the block boundaries with reasonable certainty.
Each block also carries its own 32-bit CRC, so damaged blocks can be distin-
guished from undamaged ones.

bzip2recover is a simple program whose purpose is to search for blocks in
.bz?2 files, and write each block out into its own .bz2 file. You can then use
bzip2 -t to test the integrity of the resulting files, and decompress those which
are undamaged.

bzip2recover takes a single argument, the name of the damaged file, and
writes a number of files rec00001file.bz2, rec00002file.bz2, etc, contain-
ing the extracted blocks. The output filenames are designed so that the use of
wildcards in subsequent processing — for example, bzip2 -dc rec*file.bz2 >
recovered_data — processes the files in the correct order.

bzip2recover should be of most use dealing with large .bz2 files, as these
will contain many blocks. It is clearly futile to use it on damaged single-block
files, since a damaged block cannot be recovered. If you wish to minimise any

Chapter 2: How to use bzip2

potential data loss through media or transmission errors, you might consider
compressing with a smaller block size.

PERFORMANCE NOTES

The sorting phase of compression gathers together similar strings in the file.
Because of this, files containing very long runs of repeated symbols, like
"aabaabaabaab ..." (repeated several hundred times) may compress more
slowly than normal. Versions 0.9.5 and above fare much better than previous
versions in this respect. The ratio between worst-case and average-case
compression time is in the region of 10:1. For previous versions, this figure
was more like 100:1. You can use the -vvvv option to monitor progress in
great detail, if you want.

Decompression speed is unaffected by these phenomena.

bzip2 usually allocates several megabytes of memory to operate in, and then
charges all over it in a fairly random fashion. This means that performance,
both for compressing and decompressing, is largely determined by the speed
at which your machine can service cache misses. Because of this, small changes
to the code to reduce the miss rate have been observed to give disproportion-
ately large performance improvements. I imagine bzip2 will perform best on
machines with very large caches.

CAVEATS

I/O error messages are not as helpful as they could be. bzip2 tries hard
to detect I/O errors and exit cleanly, but the details of what the problem is
sometimes seem rather misleading.

This manual page pertains to version 1.0.2 of bzip2. Compressed data created
by this version is entirely forwards and backwards compatible with the previous
public releases, versions 0.1pl2, 0.9.0, 0.9.5, 1.0.0 and 1.0.1, but with the follow-
ing exception: 0.9.0 and above can correctly decompress multiple concatenated
compressed files. 0.1pl2 cannot do this; it will stop after decompressing just
the first file in the stream.

bzip2recover versions prior to this one, 1.0.2, used 32-bit integers to represent
bit positions in compressed files, so it could not handle compressed files more
than 512 megabytes long. Version 1.0.2 and above uses 64-bit ints on some
platforms which support them (GNU supported targets, and Windows). To
establish whether or not bzip2recover was built with such a limitation, run it
without arguments. In any event you can build yourself an unlimited version
if you can recompile it with MaybeUInt64 set to be an unsigned 64-bit integer.

AUTHOR

Julian Seward, jseward@acm.org.

http://sources.redhat.com/bzip2

Chapter 2: How to use bzip2

The ideas embodied in bzip2 are due to (at least) the following people: Michael
Burrows and David Wheeler (for the block sorting transformation), David
Wheeler (again, for the Huffman coder), Peter Fenwick (for the structured
coding model in the original bzip, and many refinements), and Alistair Mof-
fat, Radford Neal and Ian Witten (for the arithmetic coder in the original
bzip). I am much indebted for their help, support and advice. See the manual
in the source distribution for pointers to sources of documentation. Christian
von Roques encouraged me to look for faster sorting algorithms, so as to speed
up compression. Bela Lubkin encouraged me to improve the worst-case com-
pression performance. The bz* scripts are derived from those of GNU gzip.
Many people sent patches, helped with portability problems, lent machines,
gave advice and were generally helpful.

Chapter 3: Programming with 1ibbzip2

3 Programming with libbzip2

This chapter describes the programming interface to 1ibbzip2.

For general background information, particularly about memory use and performance as-
pects, you’d be well advised to read Chapter 2 as well.

3.1 Top-level structure

libbzip?2 is a flexible library for compressing and decompressing data in the bzip2 data
format. Although packaged as a single entity, it helps to regard the library as three separate
parts: the low level interface, and the high level interface, and some utility functions.

The structure of 1ibbzip2’s interfaces is similar to that of Jean-loup Gailly’s and Mark
Adler’s excellent z1ib library.

All externally visible symbols have names beginning BZ2_. This is new in version 1.0. The
intention is to minimise pollution of the namespaces of library clients.

3.1.1 Low-level summary

This interface provides services for compressing and decompressing data in memory.
There’s no provision for dealing with files, streams or any other I/O mechanisms, just
straight memory-to-memory work. In fact, this part of the library can be compiled
without inclusion of stdio.h, which may be helpful for embedded applications.

The low-level part of the library has no global variables and is therefore thread-safe.

Six routines make up the low level interface: BZ2_bzCompressInit, BZ2_bzCompress, and
BZ2_bzCompressEnd for compression, and a corresponding trio BZ2_bzDecompressInit,
BZ2_bzDecompress and BZ2_bzDecompressEnd for decompression. The *Init functions
allocate memory for compression/decompression and do other initialisations, whilst the
*End functions close down operations and release memory.

The real work is done by BZ2_bzCompress and BZ2_bzDecompress. These compress and
decompress data from a user-supplied input buffer to a user-supplied output buffer. These
buffers can be any size; arbitrary quantities of data are handled by making repeated calls
to these functions. This is a flexible mechanism allowing a consumer-pull style of activity,
or producer-push, or a mixture of both.

3.1.2 High-level summary

This interface provides some handy wrappers around the low-level interface to facilitate
reading and writing bzip2 format files (.bz2 files). The routines provide hooks to facilitate
reading files in which the bzip2 data stream is embedded within some larger-scale file
structure, or where there are multiple bzip2 data streams concatenated end-to-end.

For reading files, BZ2_bzReadOpen, BZ2_bzRead, BZ2_bzReadClose and
BZ2_bzReadGetUnused are supplied. For writing files, BZ2_bzWriteOpen, BZ2_bzWrite and
BZ2_bzWriteFinish are available.

Chapter 3: Programming with 1ibbzip2

As with the low-level library, no global variables are used so the library is per se thread-
safe. However, if I/O errors occur whilst reading or writing the underlying compressed
files, you may have to consult errno to determine the cause of the error. In that case,
you’d need a C library which correctly supports errno in a multithreaded environment.

To make the library a little simpler and more portable, BZ2_bzReadOpen and
BZ2_bzWritelOpen require you to pass them file handles (FILE*s) which have previously
been opened for reading or writing respectively. That avoids portability problems
associated with file operations and file attributes, whilst not being much of an imposition
on the programmer.

3.1.3 Utility functions summary

For very simple needs, BZ2_bzBuffToBuffCompress and BZ2_bzBuffToBuffDecompress
are provided. These compress data in memory from one buffer to another buffer in a single
function call. You should assess whether these functions fulfill your memory-to-memory
compression/decompression requirements before investing effort in understanding the more
general but more complex low-level interface.

Yoshioka Tsuneo (QWFO0133@niftyserve.or.jp / tsuneo-y@is.aist-nara.ac.jp) has
contributed some functions to give better z1ib compatibility. These functions are BZ2_
bzopen, BZ2_bzread, BZ2_bzwrite, BZ2_bzflush, BZ2_bzclose, BZ2_bzerror and BZ2_
bzlibVersion. You may find these functions more convenient for simple file reading and
writing, than those in the high-level interface. These functions are not (yet) officially part
of the library, and are minimally documented here. If they break, you get to keep all the
pieces. I hope to document them properly when time permits.

Yoshioka also contributed modifications to allow the library to be built as a Windows DLL.

3.2 Error handling

The library is designed to recover cleanly in all situations, including the worst-case situation
of decompressing random data. I’'m not 100% sure that it can always do this, so you might
want to add a signal handler to catch segmentation violations during decompression if you
are feeling especially paranoid. I would be interested in hearing more about the robustness
of the library to corrupted compressed data.

Version 1.0 is much more robust in this respect than 0.9.0 or 0.9.5. Investigations with
Checker (a tool for detecting problems with memory management, similar to Purify) indi-
cate that, at least for the few files I tested, all single-bit errors in the decompressed data
are caught properly, with no segmentation faults, no reads of uninitialised data and no out
of range reads or writes. So it’s certainly much improved, although I wouldn’t claim it to
be totally bombproof.

The file bz1ib.h contains all definitions needed to use the library. In particular, you should
definitely not include bzlib_private.h.

In bzlib.h, the various return values are defined. The following list is not intended as
an exhaustive description of the circumstances in which a given value may be returned -
those descriptions are given later. Rather, it is intended to convey the rough meaning of

Chapter 3: Programming with 1ibbzip2

each return value. The first five actions are normal and not intended to denote an error
situation.

BZ_OK The requested action was completed successfully.
BZ_RUN_OK
BZ_FLUSH_OK

BZ_FINISH_OK
In BZ2_bzCompress, the requested flush/finish /nothing-special action was com-
pleted successfully.

BZ_STREAM_END
Compression of data was completed, or the logical stream end was detected
during decompression.

The following return values indicate an error of some kind.

BZ_CONFIG_ERROR

Indicates that the library has been improperly compiled on your platform
— a major configuration error. Specifically, it means that sizeof (char),
sizeof (short) and sizeof(int) are not 1, 2 and 4 respectively, as they
should be. Note that the library should still work properly on 64-bit platforms
which follow the LP64 programming model — that is, where sizeof (long)
and sizeof (voidx) are 8. Under LP64, sizeof (int) is still 4, so 1ibbzip2,
which doesn’t use the long type, is OK.

BZ_SEQUENCE_ERROR
When using the library, it is important to call the functions in the correct
sequence and with data structures (buffers etc) in the correct states. 1ibbzip2
checks as much as it can to ensure this is happening, and returns BZ_SEQUENCE_
ERROR if not. Code which complies precisely with the function semantics, as
detailed below, should never receive this value; such an event denotes buggy
code which you should investigate.

BZ_PARAM_ERROR
Returned when a parameter to a function call is out of range or otherwise
manifestly incorrect. As with BZ_SEQUENCE_ERROR, this denotes a bug in the
client code. The distinction between BZ_PARAM_ERROR and BZ_SEQUENCE_ERROR
is a bit hazy, but still worth making.

BZ_MEM_ERROR
Returned when a request to allocate memory failed. Note that the quan-
tity of memory needed to decompress a stream cannot be determined until
the stream’s header has been read. So BZ2_bzDecompress and BZ2_bzRead
may return BZ_MEM_ERROR even though some of the compressed data has been
read. The same is not true for compression; once BZ2_bzCompressInit or
BZ2_bzWriteOpen have successfully completed, BZ_MEM_ERROR cannot occur.

BZ_DATA_ERROR
Returned when a data integrity error is detected during decompression. Most
importantly, this means when stored and computed CRCs for the data do not

Chapter 3: Programming with 1ibbzip2

match. This value is also returned upon detection of any other anomaly in the
compressed data.

BZ_DATA_ERROR_MAGIC
As a special case of BZ_DATA_ERROR, it is sometimes useful to know when the
compressed stream does not start with the correct magic bytes (’B’ ’Z’ ’h’).

BZ_I0_ERROR
Returned by BZ2_bzRead and BZ2_bzWrite when there is an error reading or
writing in the compressed file, and by BZ2_bzRead0Open and BZ2_bzWriteOpen
for attempts to use a file for which the error indicator (viz, ferror(f)) is set.
On receipt of BZ_I0_ERROR, the caller should consult errno and/or perror to
acquire operating-system specific information about the problem.

BZ_UNEXPECTED_EOQOF
Returned by BZ2_bzRead when the compressed file finishes before the logical
end of stream is detected.

BZ_0OUTBUFF_FULL
Returned by BZ2_bzBuffToBuffCompress and BZ2_bzBuffToBuffDecompress
to indicate that the output data will not fit into the output buffer provided.

3.3 Low-level interface

3.3.1 BZ2_bzCompressInit

typedef
struct {
char *next_in;
unsigned int avail_in;
unsigned int total_in_lo32;
unsigned int total_in_hi32;

char *next_out;

unsigned int avail_out;
unsigned int total_out_lo032;
unsigned int total_out_hi32;

void *state;

void *(*bzalloc) (void *,int,int);
void (*bzfree) (void *,void *);
void *opaque;

}

bz_stream;

int BZ2_bzCompressInit (bz_stream *strm,
int blockSizel00k,
int verbosity,
int workFactor);

Chapter 3: Programming with 1ibbzip2

Prepares for compression. The bz_stream structure holds all data pertaining to the com-
pression activity. A bz_stream structure should be allocated and initialised prior to the
call. The fields of bz_stream comprise the entirety of the user-visible data. state is a
pointer to the private data structures required for compression.

Custom memory allocators are supported, via fields bzalloc, bzfree, and opaque. The
value opaque is passed to as the first argument to all calls to bzalloc and bzfree, but is
otherwise ignored by the library. The call bzalloc (opaque, n, m) is expected to return
a pointer p to n * m bytes of memory, and bzfree (opaque, p) should free that memory.

If you don’t want to use a custom memory allocator, set bzalloc, bzfree and opaque to
NULL, and the library will then use the standard malloc/free routines.

Before calling BZ2_bzCompressInit, fields bzalloc, bzfree and opaque should be filled
appropriately, as just described. Upon return, the internal state will have been allocated
and initialised, and total_in_l032, total_in_hi32, total_out_l032 and total_out_
hi32 will have been set to zero. These four fields are used by the library to inform the
caller of the total amount of data passed into and out of the library, respectively. You
should not try to change them. As of version 1.0, 64-bit counts are maintained, even on
32-bit platforms, using the _hi32 fields to store the upper 32 bits of the count. So, for
example, the total amount of data in is (total_in_hi32 << 32) + total_in_lo32.

Parameter blockSize100k specifies the block size to be used for compression. It should
be a value between 1 and 9 inclusive, and the actual block size used is 100000 x this figure.
9 gives the best compression but takes most memory.

Parameter verbosity should be set to a number between 0 and 4 inclusive. 0 is silent, and
greater numbers give increasingly verbose monitoring/debugging output. If the library has
been compiled with -DBZ_NO_STDIQ, no such output will appear for any verbosity setting.

Parameter workFactor controls how the compression phase behaves when presented with
worst case, highly repetitive, input data. If compression runs into difficulties caused by
repetitive data, the library switches from the standard sorting algorithm to a fallback
algorithm. The fallback is slower than the standard algorithm by perhaps a factor of three,
but always behaves reasonably, no matter how bad the input.

Lower values of workFactor reduce the amount of effort the standard algorithm will expend
before resorting to the fallback. You should set this parameter carefully; too low, and many
inputs will be handled by the fallback algorithm and so compress rather slowly, too high,
and your average-to-worst case compression times can become very large. The default
value of 30 gives reasonable behaviour over a wide range of circumstances.

Allowable values range from 0 to 250 inclusive. 0 is a special case, equivalent to using the
default value of 30.

Note that the compressed output generated is the same regardless of whether or not the
fallback algorithm is used.

Be aware also that this parameter may disappear entirely in future versions of the library.
In principle it should be possible to devise a good way to automatically choose which
algorithm to use. Such a mechanism would render the parameter obsolete.

Chapter 3: Programming with 1ibbzip2

Possible return values:

BZ_CONFIG_ERROR

if the library has been mis-compiled
BZ_PARAM_ERROR

if strm is NULL

or blockSize < 1 or blockSize > 9

or verbosity < 0 or verbosity > 4

or workFactor < 0 or workFactor > 250
BZ_MEM_ERROR

if not enough memory is available
BZ_0OK

otherwise

Allowable next actions:

BZ2_bzCompress
if BZ_OK is returned
no specific action needed in case of error

3.3.2 BZ2_bzCompress

int BZ2_bzCompress (bz_stream *strm, int action);

Provides more input and/or output buffer space for the library. The caller maintains input
and output buffers, and calls BZ2_bzCompress to transfer data between them.

Before each call to BZ2_bzCompress, next_in should point at the data to be compressed,
and avail_in should indicate how many bytes the library may read. BZ2_bzCompress
updates next_in, avail_in and total_in to reflect the number of bytes it has read.

Similarly, next_out should point to a buffer in which the compressed data is to be placed,
with avail_out indicating how much output space is available. BZ2_bzCompress updates
next_out, avail_out and total_out to reflect the number of bytes output.

You may provide and remove as little or as much data as you like on each call of BZ2_
bzCompress. In the limit, it is acceptable to supply and remove data one byte at a time,
although this would be terribly inefficient. You should always ensure that at least one byte
of output space is available at each call.

A second purpose of BZ2_bzCompress is to request a change of mode of the compressed
stream.

Conceptually, a compressed stream can be in one of four states: IDLE, RUNNING, FLUSH-
ING and FINISHING. Before initialisation (BZ2_bzCompressInit) and after termination
(BZ2_bzCompressEnd), a stream is regarded as IDLE.

Upon initialisation (BZ2_bzCompressInit), the stream is placed in the RUNNING state.
Subsequent calls to BZ2_bzCompress should pass BZ_RUN as the requested action; other
actions are illegal and will result in BZ_SEQUENCE_ERROR.

At some point, the calling program will have provided all the input data it wants to. It
will then want to finish up — in effect, asking the library to process any data it might have
buffered internally. In this state, BZ2_bzCompress will no longer attempt to read data from

Chapter 3: Programming with 1ibbzip2

next_in, but it will want to write data to next_out. Because the output buffer supplied
by the user can be arbitrarily small, the finishing-up operation cannot necessarily be done
with a single call of BZ2_bzCompress.

Instead, the calling program passes BZ_FINISH as an action to BZ2_bzCompress. This
changes the stream’s state to FINISHING. Any remaining input (ie, next_in[0 .. avail_
in-1]) is compressed and transferred to the output buffer. To do this, BZ2_bzCompress
must be called repeatedly until all the output has been consumed. At that point, BZ2_
bzCompress returns BZ_STREAM_END, and the stream’s state is set back to IDLE. BZ2_
bzCompressEnd should then be called.

Just to make sure the calling program does not cheat, the library makes a note of avail_
in at the time of the first call to BZ2_bzCompress which has BZ_FINISH as an action (ie,
at the time the program has announced its intention to not supply any more input). By
comparing this value with that of avail_in over subsequent calls to BZ2_bzCompress, the
library can detect any attempts to slip in more data to compress. Any calls for which this
is detected will return BZ_SEQUENCE_ERROR. This indicates a programming mistake which
should be corrected.

Instead of asking to finish, the calling program may ask BZ2_bzCompress to take all the
remaining input, compress it and terminate the current (Burrows-Wheeler) compression
block. This could be useful for error control purposes. The mechanism is analogous to that
for finishing: call BZ2_bzCompress with an action of BZ_FLUSH, remove output data, and
persist with the BZ_FLUSH action until the value BZ_RUN is returned. As with finishing,
BZ2_bzCompress detects any attempt to provide more input data once the flush has begun.

Once the flush is complete, the stream returns to the normal RUNNING state.

This all sounds pretty complex, but isn’t really. Here’s a table which shows which actions
are allowable in each state, what action will be taken, what the next state is, and what the
non-error return values are. Note that you can’t explicitly ask what state the stream is in,
but nor do you need to — it can be inferred from the values returned by BZ2_bzCompress.

IDLE/any
Illegal. IDLE state only exists after BZ2_bzCompressEnd or
before BZ2_bzCompressInit.
Return value = BZ_SEQUENCE_ERROR

RUNNING /BZ_RUN
Compress from next_in to next_out as much as possible.
Next state = RUNNING
Return value = BZ_RUN_0K

RUNNING /BZ_FLUSH
Remember current value of next_in. Compress from next_in
to next_out as much as possible, but do not accept any more input.
Next state = FLUSHING
Return value = BZ_FLUSH_0K

RUNNING/BZ_FINISH
Remember current value of next_in. Compress from next_in

Chapter 3: Programming with 1ibbzip2

to next_out as much as possible, but do not accept any more input.
Next state = FINISHING
Return value = BZ_FINISH_OK

FLUSHING /BZ_FLUSH
Compress from next_in to next_out as much as possible,
but do not accept any more input.
If all the existing input has been used up and all compressed
output has been removed
Next state = RUNNING; Return value = BZ_RUN_OK
else
Next state = FLUSHING; Return value = BZ_FLUSH_OK

FLUSHING /other
Illegal.
Return value = BZ_SEQUENCE_ERROR

FINISHING /BZ_FINISH
Compress from next_in to next_out as much as possible,
but to not accept any more input.
If all the existing input has been used up and all compressed
output has been removed
Next state = IDLE; Return value = BZ_STREAM_END
else
Next state = FINISHING; Return value = BZ_FINISHING

FINISHING /other
Illegal.
Return value = BZ_SEQUENCE_ERROR

That still looks complicated? Well, fair enough. The usual sequence of calls for compressing
a load of data is:
e Get started with BZ2_bzCompressInit.

e Shovel data in and shlurp out its compressed form using zero or more calls of BZ2_
bzCompress with action = BZ_RUN.

e Finish up. Repeatedly call BZ2_bzCompress with action = BZ_FINISH, copying out the
compressed output, until BZ_STREAM_END is returned.

e Close up and go home. Call BZ2_bzCompressEnd.

If the data you want to compress fits into your input buffer all at once, you can skip the calls
of BZ2_bzCompress (..., BZ_RUN) and just do the BZ2_bzCompress (..., BZ_FINISH
) calls.

All required memory is allocated by BZ2_bzCompressInit. The compression library can
accept any data at all (obviously). So you shouldn’t get any error return values from the
BZ2_bzCompress calls. If you do, they will be BZ_SEQUENCE_ERROR, and indicate a bug in
your programming.

Trivial other possible return values:

Chapter 3: Programming with 1ibbzip2

BZ_PARAM_ERROR
if strm is NULL, or strm->s is NULL

3.3.3 BZ2_bzCompressEnd

int BZ2_bzCompressEnd (bz_stream *strm) ;
Releases all memory associated with a compression stream.
Possible return values:

BZ_PARAM_ERROR if strmis NULL or strm->s is NULL
BZ_0K otherwise

3.3.4 BZ2_bzDecompressInit

int BZ2_bzDecompressInit (bz_stream *strm, int verbosity, int small);

Prepares for decompression. As with BZ2_bzCompressInit, a bz_stream record should
be allocated and initialised before the call. Fields bzalloc, bzfree and opaque should be
set if a custom memory allocator is required, or made NULL for the normal malloc/free
routines. Upon return, the internal state will have been initialised, and total_in and
total_out will be zero.

For the meaning of parameter verbosity, see BZ2_bzCompressInit.

If small is nonzero, the library will use an alternative decompression algorithm which uses
less memory but at the cost of decompressing more slowly (roughly speaking, half the
speed, but the maximum memory requirement drops to around 2300k). See Chapter 2 for
more information on memory management.

Note that the amount of memory needed to decompress a stream cannot be determined
until the stream’s header has been read, so even if BZ2_bzDecompressInit succeeds, a
subsequent BZ2_bzDecompress could fail with BZ_MEM_ERROR.

Possible return values:

BZ_CONFIG_ERROR

if the library has been mis-compiled
BZ_PARAM_ERROR

if (small != 0 && small != 1)

or (verbosity < O || verbosity > 4)
BZ_MEM_ERROR

if insufficient memory is available

Allowable next actions:

BZ2_bzDecompress
if BZ_0K was returned
no specific action required in case of error

3.3.5 BZ2_bzDecompress

int BZ2_bzDecompress (bz_stream *strm);

Chapter 3: Programming with 1ibbzip2

Provides more input and/out output buffer space for the library. The caller maintains
input and output buffers, and uses BZ2_bzDecompress to transfer data between them.

Bef