FreeBSD Developers' Handbook
內容目錄
	I. 基本概念	1. 簡介	1.1. 在 FreeBSD 開發程式
	1.2. The BSD Vision
	1.3. 程式架構指南
	1.4. /usr/src 的架構

	2. 程式開發工具	2.1. 概敘
	2.2. 簡介
	2.3. Programming 概念	2.3.1. 直譯器
	2.3.2. FreeBSD 提供的直譯器
	2.3.3. 編譯器

	2.4. 用 cc 來編譯程式	2.4.1. 常見的 cc 問題

	2.5. Make	2.5.1. What is make?
	2.5.2. Example of using make
	2.5.3. Make and include-files
	2.5.4. FreeBSD Makefiles
	2.5.5. More advanced uses of make

	2.6. Debugging	2.6.1. The Debugger
	2.6.2. Running a program in the debugger
	2.6.3. Examining a core file
	2.6.4. Attaching to a running program

	2.7. Using Emacs as a Development Environment	2.7.1. Emacs
	2.7.2. Configuring Emacs
	2.7.3. A sample .emacs file
	2.7.4. Extending the Range of Languages Emacs Understands

	2.8. Further Reading

	3. Secure Programming	3.1. Synopsis
	3.2. Secure Design
 Methodology
	3.3. Buffer Overflows	3.3.1. Example Buffer Overflow
	3.3.2. Avoiding Buffer Overflows	3.3.2.1. Compiler based run-time bounds checking
	3.3.2.2. Library based run-time bounds checking

	3.4. SetUID issues
	3.5. Limiting your program's environment	3.5.1. FreeBSD's jail functionality
	3.5.2. POSIX®.1e Process Capabilities

	3.6. Trust
	3.7. Race Conditions

	4. Localization and Internationalization - L10N and I18N	4.1. Programming I18N Compliant Applications	4.1.1. A Call to Unify the I18N Effort
	4.1.2. Perl and Python

	5. Source Tree Guidelines and Policies	5.1. MAINTAINER on Makefiles
	5.2. Contributed Software
	5.3. Encumbered Files
	5.4. Shared Libraries

	6. Regression and Performance Testing	6.1. Micro Benchmark Checklist

	II. Interprocess Communication(IPC)	7. Sockets	7.1. Synopsis
	7.2. Networking and Diversity
	7.3. Protocols
	7.4. The Sockets Model
	7.5. Essential Socket Functions	7.5.1. The Client-Server Difference	7.5.1.1. The Common Elements	7.5.1.1.1. socket
	7.5.1.1.2. sockaddr

	7.5.1.2. Client Functions	7.5.1.2.1. connect
	7.5.1.2.2. Our First Client

	7.5.1.3. Server Functions	7.5.1.3.1. bind
	7.5.1.3.2. listen
	7.5.1.3.3. accept
	7.5.1.3.4. Our First Server

	7.6. Helper Functions	7.6.1. gethostbyname
	7.6.2. getservbyname

	7.7. Concurrent Servers

	8. IPv6 Internals	8.1. IPv6/IPsec Implementation	8.1.1. IPv6	8.1.1.1. Conformance
	8.1.1.2. Neighbor Discovery
	8.1.1.3. Scope Index
	8.1.1.4. Plug and Play	8.1.1.4.1. Assignment of link-local, and special addresses
	8.1.1.4.2. Stateless address autoconfiguration on hosts

	8.1.1.5. Generic tunnel interface
	8.1.1.6. Source Address Selection
	8.1.1.7. Jumbo Payload
	8.1.1.8. Loop prevention in header processing
	8.1.1.9. ICMPv6
	8.1.1.10. Applications
	8.1.1.11. Kernel Internals
	8.1.1.12. IPv4 mapped address and IPv6 wildcard socket	8.1.1.12.1. unified tcp and inpcb code	8.1.1.12.1.1. listening side
	8.1.1.12.1.2. initiating side

	8.1.1.13. sockaddr_storage

	8.1.2. Network Drivers
	8.1.3. Translator	8.1.3.1. FAITH TCP relay translator

	8.1.4. IPsec	8.1.4.1. Policy Management
	8.1.4.2. Key Management
	8.1.4.3. AH and ESP handling
	8.1.4.4. Conformance to RFCs and IDs
	8.1.4.5. ECN consideration on IPsec tunnels
	8.1.4.6. Interoperability

	III. Kernel(核心)	9. Kernel Debugging	9.1. Obtaining a Kernel Crash Dump	9.1.1. Configuring the Dump Device
	9.1.2. Extracting a Kernel Dump

	9.2. Debugging a Kernel Crash Dump with kgdb
	9.3. Debugging a Crash Dump with DDD
	9.4. Post-Mortem Analysis of a Dump
	9.5. On-Line Kernel Debugging Using DDB
	9.6. On-Line Kernel Debugging Using Remote GDB
	9.7. Debugging Loadable Modules Using GDB
	9.8. Debugging a Console Driver
	9.9. Debugging the Deadlocks

	IV. Architectures(電腦架構)	10. x86 Assembly Language Programming	10.1. Synopsis
	10.2. The Tools	10.2.1. The Assembler
	10.2.2. The Linker

	10.3. System Calls	10.3.1. Default Calling Convention
	10.3.2. Alternate Calling Convention
	10.3.3. Which Convention Should You Use?
	10.3.4. Call Numbers	10.3.4.1. The syscalls File

	10.4. Return Values	10.4.1. Man Pages
	10.4.2. Where Are the Return Values?
	10.4.3. Where Is errno?
	10.4.4. Determining an Error Occurred

	10.5. Creating Portable Code	10.5.1. Dealing with Function Numbers
	10.5.2. Dealing with Conventions
	10.5.3. Dealing with Other Portability Issues
	10.5.4. Using a Library
	10.5.5. Using an Include File

	10.6. Our First Program	10.6.1. Assembling the Code	10.6.1.1. Installing nasm

	10.7. Writing UNIX® Filters
	10.8. Buffered Input and Output	10.8.1. How to Unread a Character

	10.9. Command Line Arguments
	10.10. UNIX® Environment	10.10.1. How to Find Environment Variables
	10.10.2. webvars	10.10.2.1. CGI: A Quick Overview
	10.10.2.2. The Code

	10.11. Working with Files	10.11.1. Finite State Machine	10.11.1.1. The Final State
	10.11.1.2. The Output Counter

	10.11.2. Implementing FSM in Software
	10.11.3. Memory Mapped Files
	10.11.4. Determining File Size
	10.11.5. Changing the File Size
	10.11.6. ftuc

	10.12. One-Pointed Mind	10.12.1. CSV	10.12.1.1. The Dark Side of Buffering

	10.13. Using the FPU	10.13.1. Organization of the FPU	10.13.1.1. The Packed Decimal Format

	10.13.2. Excursion to Pinhole Photography	10.13.2.1. The Camera
	10.13.2.2. The Pinhole
	10.13.2.3. Focal Length
	10.13.2.4. The F–Number
	10.13.2.5. Normalized F–Number
	10.13.2.6. The F–Stop

	10.13.3. Designing the Pinhole Software	10.13.3.1. Processing Program Input
	10.13.3.2. Offering Options
	10.13.3.3. The Output

	10.13.4. FPU Optimizations
	10.13.5. pinhole——The Code
	10.13.6. Using pinhole
	10.13.7. Scripting

	10.14. Caveats	10.14.1. UNIX® Is Protected
	10.14.2. UNIX® Is an Abstraction

	10.15. Acknowledgements

	V. 附錄	參考文獻
	索引

範例目錄
	2.1. A sample .emacs file

FreeBSD Developers' Handbook
FreeBSD 文件計畫

修訂: 44974版權 © 2000-2007 The FreeBSD Documentation Project
Copyright法律聲明 2014-05-29 16:48:07 由 lwhsu.摘要

 歡迎使用 Developers' Handbook！
 這份文件是由許多人 不斷撰寫 而成的，
 而且許多章節仍需更新或者內容還是一片空白，
 如果你想幫忙 FreeBSD 文件計劃，
 請寄信到 FreeBSD documentation project 郵遞論壇。

 最新版的文件都在 FreeBSD 官網 上面，
 也可從 FreeBSD FTP server 下載不同格式的資料。
 當然也可以在其他的 mirror站下載。

 [

	 章節模式
	
 /
 完整模式
]

部 I. 基本概念

章 1. 簡介
Contributed by Murray Stokely 且 Jeroen Ruigrok van der Werven. 1.1. 在 FreeBSD 開發程式
好了我們開始吧！我想你的 FreeBSD 已經安裝好了，而且已經準備好要用它寫點程式了吧？
 但是要從哪裡開始呢？FreeBSD 有提供寫程式的程式或環境嗎？
 身為 programer 的我可以做什麼呢？
本章試著回答你一些問題，當然，單就 programming 程度來說可分很多種層次，
 有的人只是單純當興趣，有的則是他的專業，
 本章主要內容是針對程式初學者，
 當然，對於那些不熟 FreeBSD 的程式開發者而言，本文件內容也是十分實用的。
1.2. The BSD Vision
為了讓你寫出來的程式在 UNIX® like系統上具有良好的使用性、效能和穩定性，
 我們必須跟你介紹一些程式概念(original software tools ideology)。
1.3. 程式架構指南
我們想介紹的概念如下
	在整個程式還沒寫完前，不要增加新的功能。

	另外一個重點就是，讓你自己選擇你的程式將會具有何種功能，
 而不是讓別人決定，不想要去滿足全世界的需求，除非你想讓你的程式具有擴充性或相容性。

	千萬記住：在沒有相關經驗時，參考範例程式碼所寫出來的程式，
 會比自己憑空寫出來的好。

	當你寫的程式沒辦法完全解決問題時，最好的方法就是不要試著要去解決它。

	若用 10% 的心力就能輕鬆完成 90% 的工作份量，就用這個簡單法子吧。

	盡可能地簡化問題的複雜。

	提供機制(mechanism)，而非原則(policy)。
 比方說，把使用者介面選擇權交由使用者來決定。

以上摘自 Scheifler & Gettys 的 "X Window System" 論文
1.4. /usr/src 的架構
完整的 FreeBSD 原始碼都在公開的 CVS repository 中。
 通常 FreeBSD 原始碼都會裝在 /usr/src，
 而且包含下列子目錄：

	Directory	Description
	bin/	Source for files in
 /bin
	contrib/	Source for files from contributed software.
	crypto/	Cryptographical sources
	etc/	Source for files in /etc
	games/	Source for files in /usr/games
	gnu/	Utilities covered by the GNU Public License
	include/	Source for files in /usr/include
	kerberos5/	Source for Kerberos version 5
	lib/	Source for files in /usr/lib
	libexec/	Source for files in /usr/libexec
	release/	Files required to produce a FreeBSD release
	rescue/	Build system for the
	 /rescue utilities
	sbin/	Source for files in /sbin
	secure/	FreeSec sources
	share/	Source for files in /usr/share
	sys/	Kernel source files
	tools/	Tools used for maintenance and testing of
	 FreeBSD
	usr.bin/	Source for files in /usr/bin
	usr.sbin/	Source for files in /usr/sbin

章 2. 程式開發工具
Contributed by James Raynard 且 Murray Stokely. 2.1. 概敘
本章將介紹如何使用一些 FreeBSD 所提供的程式開發工具(programing tools)，
 本章所介紹的工具程式在其他版本的 UNIX® 上也可使用，
 在此 並不會 嘗試描述寫程式時的每個細節，
 本章大部分篇幅都是假設你以前沒有或只有少數的寫程式經驗，
 不過，還是希望大多數的程式開發人員都能從中重新得到一些啟發。
2.2. 簡介
FreeBSD 提供一個非常棒的開發環境，
 比如說像是 C、C++、Fortran 和 assembler(組合語言)的編譯器(compiler),
 在 FreeBSD 中都已經包含在基本的系統中了
 更別提 Perl 和其他標準 UNIX® 工具，像是sed 以及 awk，
 如果你還是覺得不夠，FreeBSD在 Ports collection 中還提供其他的編譯器和直譯器(interpreter),
 FreeBSD 相容許多標準，像是 POSIX® 和 ANSI C，
 當然還有它所繼承的 BSD 傳統。
 所以在 FreeBSD 上寫的程式不需修改或頂多稍微修改，就可以在許多平台上編譯、執行。
無論如何，就算你從來沒在 UNIX® 平台上寫過程式，也可以徹底感受到FreeBSD 令人無法抗拒的迷人魔力。
 本章的目標就是協助你快速上手，而暫時不需深入太多進階主題，
 並且講解一些基礎概念，以讓你可以瞭解我們在講些什麼。
本章內容並不要求你得有程式開發經驗，或者你只有一點點的經驗而已。
 不過，我們假設你已經會 UNIX® 系統的基本操作，
 而且更重要的是，請保持樂於學習的心態！
2.3. Programming 概念
簡單的說，程式只是一堆指令的集合體；而這些指令是用來告訴電腦應該要作那些事情。
 有時候，指令的執行取決於前一個指令的結果而定。
 本章將會告訴你有 2 個主要的方法，讓你可以對電腦下達這些指示(instruction) 或 “命令(commands)”。
 第一個方法就是 直譯器(interpreter)，
 而第二個方法是 編譯器(compiler)。
 由於對於電腦而言，人類語言的語意過於模糊而太難理解，
 因此命令(commands)就常會以一種(或多種)程式語言寫成，用來指示電腦所要執行的特定動作為何。
2.3.1. 直譯器
使用直譯器時，所使用的程式語言就像變成一個會和你互動的環境。
 當在命令提示列上打上命令時，直譯器會即時執行該命令。
 在比較複雜的程式中，可以把所有想下達的命令統統輸入到某檔案裡面去，
 然後呼叫直譯器去讀取該檔案，並且執行你寫在這個檔案中的指令。
 如果所下的指令有錯誤產生，大多數的直譯器會進入偵錯模式(debugger)，
 並且顯示相關錯誤訊息，以便對程式除錯。
這種方式好處在於：可以立刻看到指令的執行結果，以及錯誤也可迅速修正。
	 相對的，最大的壞處便是當你想把你寫的程式分享給其他人時，這些人必須要有跟你一樣的直譯器。
	 而且別忘了，他們也要會使用直譯器直譯程式才行。
	 當然使用者也不希望不小心按錯鍵，就進入偵錯模式而不知所措。
	 就執行效率而言，直譯器會使用到很多的記憶體，
	 而且這類直譯式程式，通常並不會比編譯器所編譯的程式的更有效率。
筆者個人認為，如果你之前沒有學過任何程式語言，最好先學學習直譯式語言(interpreted languages)，
	 像是 Lisp，Smalltalk，Perl 和 Basic 都是，UNIX® 的 shell 像是 sh 和 csh
	 它們本身就是直譯器，事實上，很多人都在它們自己機器上撰寫各式的 shell “script”，
	 來順利完成各項 “housekeeping(維護)” 任務。
	 UNIX® 的使用哲學之一就是提供大量的小工具，
	 並使用 shell script 來組合運用這些小工具，以便工作更有效率。
2.3.2. FreeBSD 提供的直譯器
下面這邊有份 FreeBSD Ports Collection 所提供的直譯器清單，還有討論一些比較受歡迎的直譯式語言
至於如何使用 Ports Collection 安裝的說明，可參閱 FreeBSD Handbook 中的
 Ports章節。
	BASIC
	BASIC 是 Beginner's ALL-purpose Symbolic Instruction Code 的縮寫。
	 BASIC 於 1950 年代開始發展，最初開發這套語言的目的是為了教導當時的大學學生如何寫程式。
	 到了 1980，BASIC已經是很多 programmer 第一個學習的程式語言了。
	 此外，BASIC 也是 Visual Basic 的基礎。
FreeBSD Ports Collection 也有收錄相關的 BASIC 直譯器。
	 Bywater Basic 直譯器放在 lang/bwbasic。
	 而 Phil Cockroft's Basic 直譯器(早期也叫 Rabbit Basic)放在 lang/pbasic。

	Lisp
	LISP 是在 1950 年代開始發展的一個直譯式語言，而且 LISP 就是一種
	 “number-crunching” languages(迅速進行大量運算的程式語言)，在當時算是一個普遍的程式語言。
	 LISP 的表達不是基於數字(numbers)，而是基於表(lists)。
	 而最能表示出 LISP 特色的地方就在於： LISP 是 “List Processing” 的縮寫。
	 在人工智慧(Artificial Intelligence, AI)領域上 LISP 的各式應用非常普遍。
LISP 是非常強悍且複雜的程式語言，但是缺點是程式碼會非常大而且難以操作。
絕大部分的 LISP 直譯器都可以在 UNIX® 系統上運作，當然 FreeBSD 的 Ports Collection 也有收錄。
	 GNU Common Lisp 收錄在 lang/gcl，
	 Bruno Haible 和 Michael Stoll 的 CLISP 收錄在 lang/clisp
	 ，此外 CMUCL(包含一個已經最佳化的編譯器)，
	 以及其他簡化版的 LISP 直譯器(比如以 C 語言寫的 SLisp，只用幾百行程式碼就實作大多數 Common Lisp 的功能)
	 則是分別收錄在 lang/cmucl 以及
	 lang/slisp。

	Perl
	對系統管理者而言，最愛用 perl 來撰寫 scripts 以管理主機，
	 同時也經常用來寫 WWW 主機上的 CGI Script 程式。
Perl 在 Ports Collection 內的 lang/perl5。
	 而 FreeBSD 4.X 則是把 Perl 裝在 /usr/bin/perl。

	Scheme
	Scheme 是 LISP 的另一分支，Scheme 的特點就是比 Common LISP 還要簡潔有力。
	 由於 Scheme 簡單，所以很多大學拿來當作第一堂程式語言教學教材。
	 而且對於研究人員來說也可以快速的開發他們所需要的程式。
Scheme 收錄在 lang/elk，
	 Elk Scheme 直譯器(由麻省理工學院所發展的 Scheme 直譯器)收錄在
	 lang/mit-scheme，
	 SCM Scheme Interpreter 收錄在 lang/scm。

	Icon
	Icon 屬高階程式語言，Icon 具有強大的字串(String)和結構(Structure)處理能力。
	 FreeBSD Ports Collection 所收錄的 Icon 直譯器版本則是放在
	 lang/icon。

	Logo
	Logo 是種容易學習的程式語言，最常在一些教學課程中被拿來當作開頭範例。
	 如果要給小朋友開始上程式語言課的話，Logo 是相當不錯的選擇。
	 因為，即使對小朋友來說，要用 Logo 來秀出複雜多邊形圖形是相當輕鬆容易的。
Logo 在 FreeBSD Ports Collection 的最新版則是放在 lang/logo。

	Python
	Python 是物件導向的直譯式語言，
	 Python 的擁護者總是宣稱 Python 是最好入門的程式語言。
	 雖然 Python 可以很簡單的開始，但是不代表它就會輸給其他直譯式語言(像是 Perl 和 Tcl)，
	 事實證明 Python 也可以拿來開發大型、複雜的應用程式。
FreeBSD Ports Collection 收錄在 lang/python。

	Ruby
	Ruby 是純物件導向的直譯式語言。
	 Ruby 目前非常流行，原因在於他易懂的程式語法結構，在撰寫程式時的彈性，
	 以及天生具有輕易的發展維護大型專案的能力。
FreeBSD Ports Collection 收錄在 lang/ruby8。

	Tcl and Tk
	Tcl 是內嵌式的直譯式語言，讓 Tcl 可以如此廣泛運用的原因是 Tcl 的移植性。
	 Tcl 也可以快速發展一個簡單但是具有雛型的程式或者具有完整功能的程式。
Tcl 許多的版本都可在 FreeBSD 上運作，而最新的 Tcl 版本為 Tcl 8.4，
	 FreeBSD Ports Collection 收錄在 lang/tcl84。

2.3.3. 編譯器
編譯器和直譯器兩者相比的話，有些不同，首先就是必須先把程式碼統統寫入到檔案裡面，
 然後必須執行編譯器來試著編譯程式，如果編譯器不接受所寫的程式，那就必須一直修改程式，
 直到編譯器接受且把你的程式編譯成執行檔。
 此外，也可以在提示命令列，或在除錯器中執行你編譯好的程式看看它是否可以運作。
	[1]
很明顯的，使用編譯器並不像直譯器般可以馬上得到結果。
 不管如何，編譯器允許你作很多直譯器不可能或者是很難達到的事情。
 例如：撰寫和作業系統密切互動的程式，甚至是你自己寫的作業系統！
 當你想要寫出高效率的程式時，編譯器便派上用場了。
 編譯器可以在編譯時順便最佳化你的程式，但是直譯器卻不行。
 而編譯器與直譯器最大的差別在於：當你想把你寫好的程式拿到另外一台機器上跑時，
 你只要將編譯器編譯出來的可執行檔，拿到新機器上便可以執行，
 而直譯器則必須要求新機器上，必須要有跟另一台機器上相同的直譯器，
 才能組譯執行你的程式！
編譯式的程式語言包含 Pascal、C 和 C++，
 C 和 C++ 不是一個親和力十足的語言，但是很適合具有經驗的 Programmer。
 Pascal 其實是一個設計用來教學用的程式語言，而且也很適合用來入門，
 FreeBSD 預設並沒有把 Pascal 整合進 base system 中，
 但是 GNU Pascal Compiler 和 Free Pascal Compiler 都可分別在
 lang/gpc 和 lang/fpc 中找到。
如果你用不同的程式來寫編譯式程式，那麼不斷地編輯-編譯-執行-除錯的這個循環肯定會很煩人，
 為了更簡化、方便程式開發流程，很多商業編譯器廠商開始發展所謂的 IDE
 (Integrated Development Environments) 開發環境，
 FreeBSD 預設並沒有把 IDE 整合進 base system 中，
 但是你可透過 devel/kdevelop 安裝 kdevelop
 或使用 Emacs 來體驗 IDE 開發環境。
 在後面的 節 2.7, “Using Emacs as a Development Environment” 專題將介紹，如何以 Emacs 來作為 IDE 開發環境。

[1] 如果在提示命令列下執行，那麼有可能會產生 core dump。

2.4. 用 cc 來編譯程式
本章範例只有針對 GNU C compiler 和 GNU C++ compiler 作說明，
 這兩個在 FreeBSD base system 中就有了，
 直接打 cc 或 gcc 就可以執行。
 至於，如何用直譯器產生程式的說明，通常可在直譯器的文件或線上文件找到說明，因此不再贅述。
當你寫完你的傑作後，接下來便是讓這個程式可以在 FreeBSD 上執行，
 通常這些要一些步驟才能完成，有些步驟則需要不同程式來完成。
	預先處理(Pre-process)你的程式碼，移除程式內的註解，和其他技巧，
 像是 expanding(擴大) C 的 marco。

	確認你的程式語法是否確實遵照 C/C++ 的規定，如果沒有符合的話，編譯器會出現警告。

	將原始碼轉成組合語言 —— 它跟機器語言(machine code)非常相近，但仍在人類可理解的範圍內(據說應該是這樣)。
	 [2]

	把組合語言轉成機器語言 —— 是的，這裡說的機器語言就是常提到的 bit 和 byte，也就是 1 和 0。

	確認程式中用到的函式呼叫、全域變數是否正確，舉例來說：如若呼叫了不存在的函式，編譯器會顯示警告。

	如果程式是由程式碼檔案來編譯，編譯器會整合起來。

	編譯器會負責產生東西，讓系統上的 run-time loader 可以把程式載入記憶體內執行。

	最後會把編譯完的執行檔存在硬碟上。

通常 編譯(compiling) 是指第 1 到第 4 個步驟。
 —— 其他步驟則稱為 連結(linking)，
 有時候步驟 1 也可以是指 預先處理(pre-processing)，
 而步驟 3 到步驟 4 則是 組譯(assembling)。
幸運的是，你可以不用理會以上細節，編譯器都會自動完成。
 因為 cc 只是是個前端程式(front end)，它會依照正確的參數來呼叫相關程式幫你處理。
 只需打：
% cc foobar.c
上述指令會把 foobar.c 開始編譯，並完成上述動作。
 如果你有許多檔案需要編譯，那請打類似下列指令即可：
% cc foo.c bar.c
記住語法錯誤檢查就是 —— 純粹檢查語法錯誤與否，
 而不會幫你檢測任何邏輯錯誤，比如：無限迴圈，或是排序方式想用 binary sort 卻弄成 bubble sort。
 [3]
cc 有非常多的選項，都可透過線上手冊來查。
 下面只提一些必要且重要的選項，以作為例子。
	-o 檔名
	-o 編譯後的執行檔檔名，如果沒有使用這選項的話，
	 編譯好的程式預設檔名將會是 a.out

	 [4]
% cc foobar.c 執行檔就是 a.out
% cc -o foobar foobar.c 執行檔就是 foobar
	

	-c
	使用 -c 時，只會編譯原始碼，而不作連結(linking)。
	 當只想確認語法是否正確或使用 Makefile 來編譯程式時，這個選項非常有用。

 % cc -c foobar.c
	

這會產生叫做 foobar 的 object file(非執行檔)。
	 這檔可以與其他的 object file 連結在一起，而成執行檔。

	-g
	-g 將會把一些給 gdb 用的除錯訊息包進去執行檔裡面，所謂的除錯訊息例如：
	 程式在第幾行出錯、那個程式第幾行做什麼函式呼叫等等。除錯資訊非常好用。
	 但缺點就是：對於程式來說，額外的除錯訊息會讓編譯出來的程式比較肥些。
	 -g 的適用時機在於：當程式還在開發時使用就好，
	 而當你要釋出你的 “發行版本(release version)”
	 或者確認程式可運作正常的話，就不必用 -g 這選項了。
% cc -g foobar.c
	

這動作會產生有含除錯訊息的執行檔。
	 [5]

	-O
	-O 會產生最佳化的執行檔，
	 編譯器會使用一些技巧，來讓程式可以跑的比未經最佳化的程式還快，
	 可以在大寫 O 後面加上數字來指明想要的最佳化層級。
	 但是最佳化還是會有一些錯誤，舉例來說在 FreeBSD 2.10 release 中用 cc
	 且指定 -O2 時，在某些情形下會產生錯誤的執行檔。
只有當要釋出發行版本、或者加速程式時，才需要使用最佳化選項。
% cc -O -o foobar foobar.c
	

這會產生 foobar 執行檔的最佳化版本。

以下三個參數將會強迫 cc 確認程式碼是否符合一些國際標準的規範，
 也就是通常說的 ANSI 標準，
 而 ANSI 嚴格來講屬 ISO 標準。
	-Wall
	-Wall 顯示 cc 維護者所認為值得注意的所有警告訊息。
	 不過這名字可能會造成誤解，事實上它並未完全顯示 cc 所能注意到的各項警告訊息。

	-ansi
	-ansi 關閉 cc 特有的某些特殊非 ANSI C 標準功能。
	 不過這名字可能會造成誤解，事實上它並不保證你的程式會完全符合 ANSI 標準。

	-pedantic
	全面關閉 cc 所特有的非 ANSI C 標準功能。

除了這些參數，cc 還允許你使用一些額外的參數取代標準參數，有些額外參數非常有用，
 但是實際上並不是所有的編譯器都有提供這些參數。
 照標準來寫程式的最主要目的就是，希望你寫出來的程式可以在所有編譯器上編譯、執行無誤，
 當程式可以達成上述目的時，就稱為 portable code(移植性良好的程式碼)。
一般來說，在撰寫程式時就應要注意『移植性』。
 否則。當想把程式拿到另外一台機器上跑的時候，就可能得需要重寫程式。
% cc -Wall -ansi -pedantic -o foobar foobar.c

上述指令會確認 foobar.c 內的語法是否符合標準，
 並且產生名為 foobar 的執行檔。
	-llibrary
	告訴 gcc 在連結(linking)程式時你需要用到的函式庫名稱。
最常見的情況就是，當你在程式中使用了 C 數學函式庫，
	 跟其他作業平台不一樣的是，這函示學函式都不在標準函式庫(library)中，
	 因此編譯器並不知道這函式庫名稱，你必須告訴編譯器要加上它才行。
規則很簡單，如果有個函式庫叫做 libsomething.a，
	 就必須在編譯時加上參數 -lsomething 才行。
	 舉例來說，數學函式庫叫做 libm.a，
	 所以你必須給 cc 的參數就是 -lm。
	 一般情況下，通常會把這參數必須放在指令的最後。
% cc -o foobar foobar.c -lm
	

上面這指令會讓 gcc 跟數學函式庫作連結，以便你的程式可以呼叫函式庫內含的數學函式。
如果你正在編譯的程式是 C++ 程式碼，你還必須額外指定 -lg++ 或者是
	 -lstdc++。
	 如果你的 FreeBSD 是 2.2(含)以後版本，
	 你可以用指令 c++ 來取代 cc。
	 在 FreeBSD 上 c++ 也可以用 g++ 取代。
% cc -o foobar foobar.cc -lg++ 適用 FreeBSD 2.1.6 或更早期的版本
% cc -o foobar foobar.cc -lstdc++ 適用 FreeBSD 2.2 及之後的版本
% c++ -o foobar foobar.cc
	

上述指令都會從原始檔 foobar.cc 編譯產生名為 fooboar 的執行檔。
	 這邊要提醒的是在 UNIX® 系統中 C++ 程式傳統都以 .C、
	 .cxx 或者是 .cc 作為副檔名，
	 而非 MS-DOS® 那種以 .cpp 作為副檔名的命名方式(不過也越來越普遍了)。
	 gcc 會依副檔名來決定用哪一種編譯器編譯，
	 然而，現在已經不再限制副檔名了，
	 所以可以自由的使用 .cpp 作為 C++ 程式碼的副檔名！

2.4.1. 常見的 cc 問題
	2.4.1.1.
	我用 sin() 函示撰寫我的程式，
	 但是有個錯誤訊息(如下)，這代表著？
/var/tmp/cc0143941.o: Undefined symbol `_sin' referenced from text segment
	

		當使用 sin() 這類的數學函示時，
	 你必須告訴 cc 要和數學函式庫作連結(linking)，就像這樣：
% cc -o foobar foobar.c -lm
	

	2.4.1.2.
	好吧，我試著寫些簡單的程式，來練習使用 -lm 選項(該程式會運算 2.1 的 6 次方)
#include <stdio.h>

int main() {
	float f;

	f = pow(2.1, 6);
	printf("2.1 ^ 6 = %f\n", f);
	return 0;
}
	

然後進行編譯：
% cc temp.c -lm
	

編譯後執行程式，得到下面這結果：
% ./a.out
2.1 ^ 6 = 1023.000000
	

很明顯的，程式結果不是正確答案，到底是哪邊出錯？

		當編譯器發現你呼叫一個函示時，它會確認該函示的回傳值類型(prototype)，
	 如果沒有特別指明，則預設的回傳值類型為 int(整數)。
	 很明顯的，你的程式所需要的並不是回傳值類別為 int。

	2.4.1.3.
	那如何才可以修正剛所說的問題？

		數學函示的回傳值類型(prototype)會定義在 math.h，
	 如果你有 include 這檔，編譯器就會知道該函示的回傳值類型，如此一來該運算就會得到正確的結果！
#include <math.h>
#include <stdio.h>

int main() {
...
	

加了上述內容之後，再重新編譯，最後執行：
% ./a.out
2.1 ^ 6 = 85.766121
	

如果有用到數學函式，請確定要有 include math.h 這檔，
	 而且記得要和數學函式庫作連結。

	2.4.1.4.
	已經編譯好 foobar.c，
	 但是編譯後找不到 foobar 執行檔。 該去哪邊找呢？

		記得，除非有指定編譯結果的執行檔檔名，否則預設的執行檔檔名是 a.out。
	 用 -o filename 參數，
	 就可以達到所想要的結果，比如：
% cc -o foobar foobar.c
	

	2.4.1.5.
	好，有個編譯好的程式叫做 foobar，
	 用 ls 指令時可以看到，
	 但執行時，訊息卻說卻沒有這檔案。為什麼？

		與 MS-DOS® 不同的是，除非有指定執行檔的路徑，
	 否則 UNIX® 系統並不會在目前的目錄下尋找你想執行的檔案。
	 在指令列下打 ./foobar 代表
	 “執行在這個目錄底下名為 foobar 的程式”，
	 或者也可以更改 PATH 環境變數設定如下，以達成類似效果：
bin:/usr/bin:/usr/local/bin:.
	

上一行最後的 "." 代表“如果在前面寫的其他目錄找不到，就找目前的目錄”。

	2.4.1.6.
	試著執行 test 執行檔，
	 但是卻沒有任何事發生，到底是哪裡出錯了？

		大多數的 UNIX® 系統都會在路徑 /usr/bin 擺放執行檔。
	 除非有指定使用在目前目錄內的 test，否則 shell 會優先選擇位在
	 /usr/bin 的 test，
	 要指定檔名的話，作法類似：
% ./test
	

為了避免上述困擾，請為你的程式取更好的名稱吧！

	2.4.1.7.
	當執行我寫的程式時剛開始正常，
	 接下來卻出現 core dumped 錯誤訊息。這錯誤訊息到底代表什麼？

		關於 core dumped 這個名稱的由來，
	 可以追溯到早期的 UNIX® 系統開始使用 core memory 對資料排序時。
	 基本上當程式在很多情況下發生錯誤後，
	 作業系統會把 core memory 中的資訊寫入 core 這檔案中，
	 以便讓 programmer 知道程式到底是為何出錯。

	2.4.1.8.
	真是太神奇了！程式居然發生 core dumped 了，該怎麼辦？

		請用 gdb 來分析 core 結果(詳情請參考 節 2.6, “Debugging”)。

	2.4.1.9.
	當程式已經把 core memory 資料 dump 出來後，
	 同時也出現另一個錯誤 segmentation fault 這意思是？

		基本上，這個錯誤表示你的程式在記憶體中試著做一個嚴重的非法運作(illegal operation)，
	 UNIX® 就是被設計來保護整個作業系統免於被惡質的程式破壞，所以才會告訴你這個訊息。
最常造成“segmentation fault”的原因通常為：
	試著對一個 NULL 的指標(pointer)作寫入的動作，如
char *foo = NULL;
strcpy(foo, "bang!");
		

	使用一個尚未初始化(initialized)的指標，如：
char *foo;
strcpy(foo, "bang!");
		
尚未初始化的指標的初始值將會是隨機的，如果你夠幸運的話，
		 這個指標的初始值會指向 kernel 已經用到的記憶體位置，
		 kernel 會結束掉這個程式以確保系統運作正常。如果你不夠幸運，
		 初始指到的記憶體位置是你程式必須要用到的資料結構(data structures)的位置，
		 當這個情形發生時程式將會當的不知其所以然。

	試著寫入超過陣列(array)元素個數，如：
int bar[20];
bar[27] = 6;
		

	試著讀寫在唯讀記憶體(read-only memory)中的資料，如：
char *foo = "My string";
strcpy(foo, "bang!");
		
UNIX® compilers often put string literals like
		 "My string" into read-only areas
		 of memory.

	Doing naughty things with
		 malloc() and
		 free(), eg
char bar[80];
free(bar);
		
or
char *foo = malloc(27);
free(foo);
free(foo);
		

Making one of these mistakes will not always lead to
	 an error, but they are always bad practice. Some
	 systems and compilers are more tolerant than others,
	 which is why programs that ran well on one system can
	 crash when you try them on an another.

	2.4.1.10.
	Sometimes when I get a core dump it says
	 bus error. It says in my UNIX®
	 book that this means a hardware problem, but the
	 computer still seems to be working. Is this
	 true?

		No, fortunately not (unless of course you really do
	 have a hardware problem…). This is usually
	 another way of saying that you accessed memory in a way
	 you should not have.

	2.4.1.11.
	This dumping core business sounds as though it could
	 be quite useful, if I can make it happen when I want to.
	 Can I do this, or do I have to wait until there is an
	 error?

		Yes, just go to another console or xterm, do
% ps
	
to find out the process ID of your program, and
	 do
% kill -ABRT pid
	
where
	 pid is
	 the process ID you looked up.
This is useful if your program has got stuck in an
	 infinite loop, for instance. If your program happens to
	 trap SIGABRT, there are several other
	 signals which have a similar effect.
Alternatively, you can create a core dump from
	 inside your program, by calling the
	 abort() function. See the manual page
	 of abort(3) to learn more.
If you want to create a core dump from outside your
 program, but do not want the process to terminate, you
 can use the gcore program. See the
 manual page of gcore(1) for more information.

[2] 嚴格說起來，在這個階段 cc 並不是真的把原始程式轉成組合語言，
 而是轉為 machine-independent 的 p-code。

[3] 剛所說的 binary sort 和 bubble sort 問題，
 在已排序好的序列中，binary sort 搜索效率會比 bubble sort 好。

[4] 至於 -o 的原因，則是一團歷史迷霧了。

[5] 請注意，因為上例沒用 -o 以指定執行檔名稱，
	 所以執行檔會是 a.out 這檔。
	 那麼，要如何產生 foobar 的執行檔並內含除錯訊息，
	 這就留待看倌們練習一下囉。

2.5. Make
2.5.1. What is make?
When you are working on a simple program with only one or
	two source files, typing in
% cc file1.c file2.c
is not too bad, but it quickly becomes very tedious when
	there are several files——and it can take a while to
	compile, too.
One way to get around this is to use object files and only
	recompile the source file if the source code has changed. So
	we could have something like:
% cc file1.o file2.o … file37.c …
if we had changed file37.c, but not any
	of the others, since the last time we compiled. This may
	speed up the compilation quite a bit, but does not solve the
	typing problem.
Or we could write a shell script to solve the typing
	problem, but it would have to re-compile everything, making it
	very inefficient on a large project.
What happens if we have hundreds of source files lying
	about? What if we are working in a team with other people who
	forget to tell us when they have changed one of their source
	files that we use?
Perhaps we could put the two solutions together and write
	something like a shell script that would contain some kind of
	magic rule saying when a source file needs compiling. Now all
	we need now is a program that can understand these rules, as
	it is a bit too complicated for the shell.
This program is called make. It reads
	in a file, called a makefile, that
	tells it how different files depend on each other, and works
	out which files need to be re-compiled and which ones do not.
	For example, a rule could say something like “if
	 fromboz.o is older than
	 fromboz.c, that means someone must have
	 changed fromboz.c, so it needs to be
	 re-compiled.” The makefile also has rules telling
	make how to re-compile the source file,
	making it a much more powerful tool.
Makefiles are typically kept in the same directory as the
	source they apply to, and can be called
	makefile, Makefile
	or MAKEFILE. Most programmers use the
	name Makefile, as this puts it near the
	top of a directory listing, where it can easily be
	seen.

	[6]
2.5.2. Example of using make
Here is a very simple make file:
foo: foo.c
	cc -o foo foo.c
It consists of two lines, a dependency line and a creation
	line.
The dependency line here consists of the name of the
	program (known as the target), followed
	by a colon, then whitespace, then the name of the source file.
	When make reads this line, it looks to see
	if foo exists; if it exists, it compares
	the time foo was last modified to the
	time foo.c was last modified. If
	foo does not exist, or is older than
	foo.c, it then looks at the creation line
	to find out what to do. In other words, this is the rule for
	working out when foo.c needs to be
	re-compiled.
The creation line starts with a tab (press
	the tab key) and then the command you would
	type to create foo if you were doing it
	at a command prompt. If foo is out of
	date, or does not exist, make then executes
	this command to create it. In other words, this is the rule
	which tells make how to re-compile
	foo.c.
So, when you type make, it will
	make sure that foo is up to date with
	respect to your latest changes to foo.c.
	This principle can be extended to
	Makefiles with hundreds of
	targets——in fact, on FreeBSD, it is possible to compile
	the entire operating system just by typing make
	 world in the appropriate directory!
Another useful property of makefiles is that the targets
	do not have to be programs. For instance, we could have a make
	file that looks like this:
foo: foo.c
	cc -o foo foo.c

install:
	cp foo /home/me
We can tell make which target we want to make by
	typing:
% make target
make will then only look at that target
	and ignore any others. For example, if we type
	make foo with the makefile above, make
	will ignore the install target.
If we just type make on its own,
	make will always look at the first target and then stop
	without looking at any others. So if we typed
	make here, it will just go to the
	foo target, re-compile
	foo if necessary, and then stop without
	going on to the install target.
Notice that the install target does not
	actually depend on anything! This means that the command on
	the following line is always executed when we try to make that
	target by typing make install. In this
	case, it will copy foo into the user's
	home directory. This is often used by application makefiles,
	so that the application can be installed in the correct
	directory when it has been correctly compiled.
This is a slightly confusing subject to try to explain.
	If you do not quite understand how make
	works, the best thing to do is to write a simple program like
	“hello world” and a make file like the one above
	and experiment. Then progress to using more than one source
	file, or having the source file include a header file. The
	touch command is very useful here——it
	changes the date on a file without you having to edit
	it.
2.5.3. Make and include-files
C code often starts with a list of files to include, for
	example stdio.h. Some of these files are system-include
	files, some of them are from the project you are now working
	on:

#include <stdio.h>
#include "foo.h"

int main(....
To make sure that this file is recompiled the moment
 foo.h is changed, you have to add it in
 your Makefile:
foo: foo.c foo.h
The moment your project is getting bigger and you have
	more and more own include-files to maintain, it will be a
	pain to keep track of all include files and the files which
	are depending on it. If you change an include-file but
	forget to recompile all the files which are depending on
	it, the results will be devastating. gcc
	has an option to analyze your files and to produce a list
	of include-files and their dependencies: -MM.

If you add this to your Makefile:
depend:
	gcc -E -MM *.c > .depend
and run make depend, the file
	.depend will appear with a list of
	object-files, C-files and the include-files:
foo.o: foo.c foo.h
If you change foo.h, next time
	you run make all files depending on
	foo.h will be recompiled.
Do not forget to run make depend each
 time you add an include-file to one of your files.
2.5.4. FreeBSD Makefiles
Makefiles can be rather complicated to write. Fortunately,
	BSD-based systems like FreeBSD come with some very powerful
	ones as part of the system. One very good example of this is
	the FreeBSD ports system. Here is the essential part of a
	typical ports Makefile:
MASTER_SITES= ftp://freefall.cdrom.com/pub/FreeBSD/LOCAL_PORTS/
DISTFILES= scheme-microcode+dist-7.3-freebsd.tgz

.include <bsd.port.mk>
Now, if we go to the directory for this port and type
	make, the following happens:
	A check is made to see if the source code for this
	 port is already on the system.

	If it is not, an FTP connection to the URL in
	 MASTER_SITES is set up to download the
	 source.

	The checksum for the source is calculated and compared
	 it with one for a known, good, copy of the source. This
	 is to make sure that the source was not corrupted while in
	 transit.

	Any changes required to make the source work on
	 FreeBSD are applied——this is known as
	 patching.

	Any special configuration needed for the source is
	 done. (Many UNIX® program distributions try to work out
	 which version of UNIX® they are being compiled on and which
	 optional UNIX® features are present——this is where
	 they are given the information in the FreeBSD ports
	 scenario).

	The source code for the program is compiled. In
	 effect, we change to the directory where the source was
	 unpacked and do make——the
	 program's own make file has the necessary information to
	 build the program.

	We now have a compiled version of the program. If we
	 wish, we can test it now; when we feel confident about the
	 program, we can type make install.
	 This will cause the program and any supporting files it
	 needs to be copied into the correct location; an entry is
	 also made into a package database, so
	 that the port can easily be uninstalled later if we change
	 our mind about it.

Now I think you will agree that is rather impressive for a
	four line script!
The secret lies in the last line, which tells
	make to look in the system makefile called
	bsd.port.mk. It is easy to overlook this
	line, but this is where all the clever stuff comes
	from——someone has written a makefile that tells
	make to do all the things above (plus a
	couple of other things I did not mention, including handling
	any errors that may occur) and anyone can get access to that
	just by putting a single line in their own make file!
If you want to have a look at these system makefiles,
	they are in /usr/share/mk, but it is
	probably best to wait until you have had a bit of practice with
	makefiles, as they are very complicated (and if you do look at
	them, make sure you have a flask of strong coffee
	handy!)
2.5.5. More advanced uses of make
Make is a very powerful tool, and can
	do much more than the simple example above shows.
	Unfortunately, there are several different versions of
	make, and they all differ considerably.
	The best way to learn what they can do is probably to read the
	documentation——hopefully this introduction will have
	given you a base from which you can do this.
The version of make that comes with FreeBSD is the
	Berkeley make; there is a tutorial
	for it in /usr/share/doc/psd/12.make. To
	view it, do
% zmore paper.ascii.gz
in that directory.
Many applications in the ports use GNU
	 make, which has a very good set of
	“info” pages. If you have installed any of these
	ports, GNU make will automatically
	have been installed as gmake. It is also
	available as a port and package in its own right.
To view the info pages for GNU
	make, you will have to edit the
	dir file in the
	/usr/local/info directory to add an entry
	for it. This involves adding a line like
 * Make: (make). The GNU Make utility.
to the file. Once you have done this, you can type
	info and then select
	make from the menu (or in
	Emacs, do C-h
	 i).

[6] They do not use the MAKEFILE form
	 as block capitals are often used for documentation files
	 like README.

2.6. Debugging
2.6.1. The Debugger
The debugger that comes with FreeBSD is called
	gdb (GNU
	 debugger). You start it up by typing
% gdb progname
although most people prefer to run it inside
	Emacs. You can do this by:
M-x gdb RET progname RET
Using a debugger allows you to run the program under more
	controlled circumstances. Typically, you can step through the
	program a line at a time, inspect the value of variables,
	change them, tell the debugger to run up to a certain point
	and then stop, and so on. You can even attach to a program
	that is already running, or load a core file to investigate why
	the program crashed. It is even possible to debug the kernel,
	though that is a little trickier than the user applications
	we will be discussing in this section.
gdb has quite good on-line help, as
	well as a set of info pages, so this section will concentrate
	on a few of the basic commands.
Finally, if you find its text-based command-prompt style
	off-putting, there is a graphical front-end for it (xxgdb) in the ports
	collection.
This section is intended to be an introduction to using
	gdb and does not cover specialized topics
	such as debugging the kernel.
2.6.2. Running a program in the debugger
You will need to have compiled the program with the
	-g option to get the most out of using
	gdb. It will work without, but you will only
	see the name of the function you are in, instead of the source
	code. If you see a line like:
… (no debugging symbols found) …
when gdb starts up, you will know that
	the program was not compiled with the -g
	option.
At the gdb prompt, type
	break main. This will tell the
	debugger to skip over the preliminary set-up code in the
	program and start at the beginning of your code. Now type
	run to start the program——it will
	start at the beginning of the set-up code and then get stopped
	by the debugger when it calls main().
	(If you have ever wondered where main()
	gets called from, now you know!).
You can now step through the program, a line at a time, by
	pressing n. If you get to a function call,
	you can step into it by pressing s. Once
	you are in a function call, you can return from stepping into a
	function call by pressing f. You can also
	use up and down to take
	a quick look at the caller.
Here is a simple example of how to spot a mistake in a
	program with gdb. This is our program
	(with a deliberate mistake):
#include <stdio.h>

int bazz(int anint);

main() {
	int i;

	printf("This is my program\n");
	bazz(i);
	return 0;
}

int bazz(int anint) {
	printf("You gave me %d\n", anint);
	return anint;
}
This program sets i to be
	5 and passes it to a function
	bazz() which prints out the number we
	gave it.
When we compile and run the program we get
% cc -g -o temp temp.c
% ./temp
This is my program
anint = 4231
That was not what we expected! Time to see what is going
	on!
% gdb temp
GDB is free software and you are welcome to distribute copies of it
 under certain conditions; type "show copying" to see the conditions.
There is absolutely no warranty for GDB; type "show warranty" for details.
GDB 4.13 (i386-unknown-freebsd), Copyright 1994 Free Software Foundation, Inc.
(gdb) break main				Skip the set-up code
Breakpoint 1 at 0x160f: file temp.c, line 9.	gdb puts breakpoint at main()
(gdb) run					Run as far as main()
Starting program: /home/james/tmp/temp		Program starts running

Breakpoint 1, main () at temp.c:9		gdb stops at main()
(gdb) n						Go to next line
This is my program				Program prints out
(gdb) s						step into bazz()
bazz (anint=4231) at temp.c:17			gdb displays stack frame
(gdb)
Hang on a minute! How did anint get to be
	4231? Did we not we set it to be
	5 in main()? Let's
	move up to main() and have a look.
(gdb) up					Move up call stack
#1 0x1625 in main () at temp.c:11		gdb displays stack frame
(gdb) p i					Show us the value of i
$1 = 4231					gdb displays 4231
Oh dear! Looking at the code, we forgot to initialize
	i. We meant to put
…
main() {
	int i;

	i = 5;
	printf("This is my program\n");
…
but we left the i=5; line out. As we
	did not initialize i, it had whatever number
	happened to be in that area of memory when the program ran,
	which in this case happened to be
	4231.
注意:
gdb displays the stack frame every
	 time we go into or out of a function, even if we are using
	 up and down to move
	 around the call stack. This shows the name of the function
	 and the values of its arguments, which helps us keep track
	 of where we are and what is going on. (The stack is a
	 storage area where the program stores information about the
	 arguments passed to functions and where to go when it
	 returns from a function call).

2.6.3. Examining a core file
A core file is basically a file which contains the
	complete state of the process when it crashed. In “the
	 good old days”, programmers had to print out hex
	listings of core files and sweat over machine code manuals,
	but now life is a bit easier. Incidentally, under FreeBSD and
	other 4.4BSD systems, a core file is called
	progname.core instead of just
	core, to make it clearer which program a
	core file belongs to.
To examine a core file, start up gdb in
	the usual way. Instead of typing break or
	run, type
(gdb) core progname.core
If you are not in the same directory as the core file,
	you will have to do dir
	 /path/to/core/file first.
You should see something like this:
% gdb a.out
GDB is free software and you are welcome to distribute copies of it
 under certain conditions; type "show copying" to see the conditions.
There is absolutely no warranty for GDB; type "show warranty" for details.
GDB 4.13 (i386-unknown-freebsd), Copyright 1994 Free Software Foundation, Inc.
(gdb) core a.out.core
Core was generated by `a.out'.
Program terminated with signal 11, Segmentation fault.
Cannot access memory at address 0x7020796d.
#0 0x164a in bazz (anint=0x5) at temp.c:17
(gdb)
In this case, the program was called
	a.out, so the core file is called
	a.out.core. We can see that the program
	crashed due to trying to access an area in memory that was not
	available to it in a function called
	bazz.
Sometimes it is useful to be able to see how a function was
	called, as the problem could have occurred a long way up the
	call stack in a complex program. The bt
	command causes gdb to print out a
	back-trace of the call stack:
(gdb) bt
#0 0x164a in bazz (anint=0x5) at temp.c:17
#1 0xefbfd888 in end ()
#2 0x162c in main () at temp.c:11
(gdb)
The end() function is called when a
	program crashes; in this case, the bazz()
	function was called from main().
2.6.4. Attaching to a running program
One of the neatest features about gdb
	is that it can attach to a program that is already running. Of
	course, that assumes you have sufficient permissions to do so.
	A common problem is when you are stepping through a program
	that forks, and you want to trace the child, but the debugger
	will only let you trace the parent.
What you do is start up another gdb,
	use ps to find the process ID for the
	child, and do
(gdb) attach pid
in gdb, and then debug as usual.
“That is all very well,” you are probably
	thinking, “but by the time I have done that, the child
	 process will be over the hill and far away”. Fear
	not, gentle reader, here is how to do it (courtesy of the
	gdb info pages):
…
if ((pid = fork()) < 0)		/* _Always_ check this */
	error();
else if (pid == 0) {		/* child */
	int PauseMode = 1;

	while (PauseMode)
		sleep(10);	/* Wait until someone attaches to us */
	…
} else {			/* parent */
	…
Now all you have to do is attach to the child, set
	PauseMode to 0, and wait
	for the sleep() call to return!
2.7. Using Emacs as a Development Environment
2.7.1. Emacs
Unfortunately, UNIX® systems do not come with the kind of
	everything-you-ever-wanted-and-lots-more-you-did-not-in-one-gigantic-package
	integrated development environments that other systems
	have.

	[7]

	However, it is possible to set up your own environment. It
	may not be as pretty, and it may not be quite as integrated,
	but you can set it up the way you want it. And it is free.
	And you have the source to it.
The key to it all is Emacs. Now there are some people who
	loathe it, but many who love it. If you are one of the former,
	I am afraid this section will hold little of interest to you.
	Also, you will need a fair amount of memory to run it——I would
	recommend 8MB in text mode and 16MB in X as the bare minimum
	to get reasonable performance.
Emacs is basically a highly customizable
	editor——indeed, it has been customized to the point where
	it is more like an operating system than an editor! Many
	developers and sysadmins do in fact spend practically all
	their time working inside Emacs, leaving it only to log
	out.
It is impossible even to summarize everything Emacs can do
	here, but here are some of the features of interest to
	developers:
	Very powerful editor, allowing search-and-replace on
	 both strings and regular expressions (patterns), jumping
	 to start/end of block expression, etc, etc.

	Pull-down menus and online help.

	Language-dependent syntax highlighting and
	 indentation.

	Completely customizable.

	You can compile and debug programs within
	 Emacs.

	On a compilation error, you can jump to the offending
	 line of source code.

	Friendly-ish front-end to the info
	 program used for reading GNU hypertext documentation,
	 including the documentation on Emacs itself.

	Friendly front-end to gdb, allowing
	 you to look at the source code as you step through your
	 program.

	You can read Usenet news and mail while your program
	 is compiling.

And doubtless many more that I have overlooked.
Emacs can be installed on FreeBSD using the Emacs
	 port.
Once it is installed, start it up and do C-h
	 t to read an Emacs tutorial——that means
	hold down the control key, press
	h, let go of the control
	key, and then press t. (Alternatively, you
	can you use the mouse to select Emacs
	 Tutorial from the Help
	menu).
Although Emacs does have menus, it is well worth learning
	the key bindings, as it is much quicker when you are editing
	something to press a couple of keys than to try to find the
	mouse and then click on the right place. And, when you are
	talking to seasoned Emacs users, you will find they often
	casually throw around expressions like “M-x
	 replace-s RET foo RET bar RET” so it is
	useful to know what they mean. And in any case, Emacs has far
	too many useful functions for them to all fit on the menu
	bars.
Fortunately, it is quite easy to pick up the key-bindings,
	as they are displayed next to the menu item. My advice is to
	use the menu item for, say, opening a file until you
	understand how it works and feel confident with it, then try
	doing C-x C-f. When you are happy with that, move on to
	another menu command.
If you can not remember what a particular combination of
	keys does, select Describe Key from
	the Help menu and type it in——Emacs
	will tell you what it does. You can also use the
	Command Apropos menu item to find
	out all the commands which contain a particular word in them,
	with the key binding next to it.
By the way, the expression above means hold down the
	Meta key, press x, release
	the Meta key, type
	replace-s (short for
	replace-string——another feature of
	Emacs is that you can abbreviate commands), press the
	return key, type foo
	(the string you want replaced), press the
	return key, type bar (the string you want to
	replace foo with) and press
	return again. Emacs will then do the
	search-and-replace operation you have just requested.
If you are wondering what on earth the
	Meta key is, it is a special key that many
	UNIX® workstations have. Unfortunately, PC's do not have one,
	so it is usually the alt key (or if you are
	unlucky, the escape key).
Oh, and to get out of Emacs, do C-x C-c
	(that means hold down the control key, press
	x, press c and release the
	control key). If you have any unsaved files
	open, Emacs will ask you if you want to save them. (Ignore
	the bit in the documentation where it says
	C-z is the usual way to leave
	Emacs——that leaves Emacs hanging around in the
	background, and is only really useful if you are on a system
	which does not have virtual terminals).
2.7.2. Configuring Emacs
Emacs does many wonderful things; some of them are built
	in, some of them need to be configured.
Instead of using a proprietary macro language for
	configuration, Emacs uses a version of Lisp specially adapted
	for editors, known as Emacs Lisp. Working with Emacs Lisp can
	be quite helpful if you want to go on and learn something like
	Common Lisp. Emacs Lisp has many features of Common Lisp,
	although it is considerably smaller (and thus easier to
	master).
The best way to learn Emacs Lisp is to download the Emacs
	 Tutorial
However, there is no need to actually know any Lisp to get
	started with configuring Emacs, as I have included a sample
	.emacs file, which should be enough to
	get you started. Just copy it into your home directory and
	restart Emacs if it is already running; it will read the
	commands from the file and (hopefully) give you a useful basic
	setup.
2.7.3. A sample .emacs file
Unfortunately, there is far too much here to explain it in
	detail; however there are one or two points worth
	mentioning.
	Everything beginning with a ; is a comment
	 and is ignored by Emacs.

	In the first line, the
	 -*- Emacs-Lisp -*- is so that
	 we can edit the .emacs file itself
	 within Emacs and get all the fancy features for editing
	 Emacs Lisp. Emacs usually tries to guess this based on
	 the filename, and may not get it right for
	 .emacs.

	The tab key is bound to an
	 indentation function in some modes, so when you press the
	 tab key, it will indent the current line of code. If you
	 want to put a tab character in whatever
	 you are writing, hold the control key down
	 while you are pressing the tab key.

	This file supports syntax highlighting for C, C++,
	 Perl, Lisp and Scheme, by guessing the language from the
	 filename.

	Emacs already has a pre-defined function called
	 next-error. In a compilation output
	 window, this allows you to move from one compilation error
	 to the next by doing M-n; we define a
	 complementary function,
	 previous-error, that allows you to go
	 to a previous error by doing M-p. The
	 nicest feature of all is that C-c C-c
	 will open up the source file in which the error occurred
	 and jump to the appropriate line.

	We enable Emacs's ability to act as a server, so that
	 if you are doing something outside Emacs and you want to
	 edit a file, you can just type in
% emacsclient filename
	
and then you can edit the file in your
	 Emacs!

	 [8]

範例 2.1. A sample .emacs file
;; -*-Emacs-Lisp-*-

;; This file is designed to be re-evaled; use the variable first-time
;; to avoid any problems with this.
(defvar first-time t
 "Flag signifying this is the first time that .emacs has been evaled")

;; Meta
(global-set-key "\M- " 'set-mark-command)
(global-set-key "\M-\C-h" 'backward-kill-word)
(global-set-key "\M-\C-r" 'query-replace)
(global-set-key "\M-r" 'replace-string)
(global-set-key "\M-g" 'goto-line)
(global-set-key "\M-h" 'help-command)

;; Function keys
(global-set-key [f1] 'manual-entry)
(global-set-key [f2] 'info)
(global-set-key [f3] 'repeat-complex-command)
(global-set-key [f4] 'advertised-undo)
(global-set-key [f5] 'eval-current-buffer)
(global-set-key [f6] 'buffer-menu)
(global-set-key [f7] 'other-window)
(global-set-key [f8] 'find-file)
(global-set-key [f9] 'save-buffer)
(global-set-key [f10] 'next-error)
(global-set-key [f11] 'compile)
(global-set-key [f12] 'grep)
(global-set-key [C-f1] 'compile)
(global-set-key [C-f2] 'grep)
(global-set-key [C-f3] 'next-error)
(global-set-key [C-f4] 'previous-error)
(global-set-key [C-f5] 'display-faces)
(global-set-key [C-f8] 'dired)
(global-set-key [C-f10] 'kill-compilation)

;; Keypad bindings
(global-set-key [up] "\C-p")
(global-set-key [down] "\C-n")
(global-set-key [left] "\C-b")
(global-set-key [right] "\C-f")
(global-set-key [home] "\C-a")
(global-set-key [end] "\C-e")
(global-set-key [prior] "\M-v")
(global-set-key [next] "\C-v")
(global-set-key [C-up] "\M-\C-b")
(global-set-key [C-down] "\M-\C-f")
(global-set-key [C-left] "\M-b")
(global-set-key [C-right] "\M-f")
(global-set-key [C-home] "\M-<")
(global-set-key [C-end] "\M->")
(global-set-key [C-prior] "\M-<")
(global-set-key [C-next] "\M->")

;; Mouse
(global-set-key [mouse-3] 'imenu)

;; Misc
(global-set-key [C-tab] "\C-q\t")	; Control tab quotes a tab.
(setq backup-by-copying-when-mismatch t)

;; Treat 'y' or <CR> as yes, 'n' as no.
(fset 'yes-or-no-p 'y-or-n-p)
(define-key query-replace-map [return] 'act)
(define-key query-replace-map [?\C-m] 'act)

;; Load packages
(require 'desktop)
(require 'tar-mode)

;; Pretty diff mode
(autoload 'ediff-buffers "ediff" "Intelligent Emacs interface to diff" t)
(autoload 'ediff-files "ediff" "Intelligent Emacs interface to diff" t)
(autoload 'ediff-files-remote "ediff"
 "Intelligent Emacs interface to diff")

(if first-time
 (setq auto-mode-alist
	 (append '(("\\.cpp$" . c++-mode)
		 ("\\.hpp$" . c++-mode)
		 ("\\.lsp$" . lisp-mode)
		 ("\\.scm$" . scheme-mode)
		 ("\\.pl$" . perl-mode)
) auto-mode-alist)))

;; Auto font lock mode
(defvar font-lock-auto-mode-list
 (list 'c-mode 'c++-mode 'c++-c-mode 'emacs-lisp-mode 'lisp-mode 'perl-mode 'scheme-mode)
 "List of modes to always start in font-lock-mode")

(defvar font-lock-mode-keyword-alist
 '((c++-c-mode . c-font-lock-keywords)
 (perl-mode . perl-font-lock-keywords))
 "Associations between modes and keywords")

(defun font-lock-auto-mode-select ()
 "Automatically select font-lock-mode if the current major mode is in font-lock-auto-mode-list"
 (if (memq major-mode font-lock-auto-mode-list)
 (progn
	(font-lock-mode t))
)
)

(global-set-key [M-f1] 'font-lock-fontify-buffer)

;; New dabbrev stuff
;(require 'new-dabbrev)
(setq dabbrev-always-check-other-buffers t)
(setq dabbrev-abbrev-char-regexp "\\sw\\|\\s_")
(add-hook 'emacs-lisp-mode-hook
	 '(lambda ()
	 (set (make-local-variable 'dabbrev-case-fold-search) nil)
	 (set (make-local-variable 'dabbrev-case-replace) nil)))
(add-hook 'c-mode-hook
	 '(lambda ()
	 (set (make-local-variable 'dabbrev-case-fold-search) nil)
	 (set (make-local-variable 'dabbrev-case-replace) nil)))
(add-hook 'text-mode-hook
	 '(lambda ()
	 (set (make-local-variable 'dabbrev-case-fold-search) t)
	 (set (make-local-variable 'dabbrev-case-replace) t)))

;; C++ and C mode...
(defun my-c++-mode-hook ()
 (setq tab-width 4)
 (define-key c++-mode-map "\C-m" 'reindent-then-newline-and-indent)
 (define-key c++-mode-map "\C-ce" 'c-comment-edit)
 (setq c++-auto-hungry-initial-state 'none)
 (setq c++-delete-function 'backward-delete-char)
 (setq c++-tab-always-indent t)
 (setq c-indent-level 4)
 (setq c-continued-statement-offset 4)
 (setq c++-empty-arglist-indent 4))

(defun my-c-mode-hook ()
 (setq tab-width 4)
 (define-key c-mode-map "\C-m" 'reindent-then-newline-and-indent)
 (define-key c-mode-map "\C-ce" 'c-comment-edit)
 (setq c-auto-hungry-initial-state 'none)
 (setq c-delete-function 'backward-delete-char)
 (setq c-tab-always-indent t)
;; BSD-ish indentation style
 (setq c-indent-level 4)
 (setq c-continued-statement-offset 4)
 (setq c-brace-offset -4)
 (setq c-argdecl-indent 0)
 (setq c-label-offset -4))

;; Perl mode
(defun my-perl-mode-hook ()
 (setq tab-width 4)
 (define-key c++-mode-map "\C-m" 'reindent-then-newline-and-indent)
 (setq perl-indent-level 4)
 (setq perl-continued-statement-offset 4))

;; Scheme mode...
(defun my-scheme-mode-hook ()
 (define-key scheme-mode-map "\C-m" 'reindent-then-newline-and-indent))

;; Emacs-Lisp mode...
(defun my-lisp-mode-hook ()
 (define-key lisp-mode-map "\C-m" 'reindent-then-newline-and-indent)
 (define-key lisp-mode-map "\C-i" 'lisp-indent-line)
 (define-key lisp-mode-map "\C-j" 'eval-print-last-sexp))

;; Add all of the hooks...
(add-hook 'c++-mode-hook 'my-c++-mode-hook)
(add-hook 'c-mode-hook 'my-c-mode-hook)
(add-hook 'scheme-mode-hook 'my-scheme-mode-hook)
(add-hook 'emacs-lisp-mode-hook 'my-lisp-mode-hook)
(add-hook 'lisp-mode-hook 'my-lisp-mode-hook)
(add-hook 'perl-mode-hook 'my-perl-mode-hook)

;; Complement to next-error
(defun previous-error (n)
 "Visit previous compilation error message and corresponding source code."
 (interactive "p")
 (next-error (- n)))

;; Misc...
(transient-mark-mode 1)
(setq mark-even-if-inactive t)
(setq visible-bell nil)
(setq next-line-add-newlines nil)
(setq compile-command "make")
(setq suggest-key-bindings nil)
(put 'eval-expression 'disabled nil)
(put 'narrow-to-region 'disabled nil)
(put 'set-goal-column 'disabled nil)
(if (>= emacs-major-version 21)
	(setq show-trailing-whitespace t))

;; Elisp archive searching
(autoload 'format-lisp-code-directory "lispdir" nil t)
(autoload 'lisp-dir-apropos "lispdir" nil t)
(autoload 'lisp-dir-retrieve "lispdir" nil t)
(autoload 'lisp-dir-verify "lispdir" nil t)

;; Font lock mode
(defun my-make-face (face color &optional bold)
 "Create a face from a color and optionally make it bold"
 (make-face face)
 (copy-face 'default face)
 (set-face-foreground face color)
 (if bold (make-face-bold face))
)

(if (eq window-system 'x)
 (progn
 (my-make-face 'blue "blue")
 (my-make-face 'red "red")
 (my-make-face 'green "dark green")
 (setq font-lock-comment-face 'blue)
 (setq font-lock-string-face 'bold)
 (setq font-lock-type-face 'bold)
 (setq font-lock-keyword-face 'bold)
 (setq font-lock-function-name-face 'red)
 (setq font-lock-doc-string-face 'green)
 (add-hook 'find-file-hooks 'font-lock-auto-mode-select)

 (setq baud-rate 1000000)
 (global-set-key "\C-cmm" 'menu-bar-mode)
 (global-set-key "\C-cms" 'scroll-bar-mode)
 (global-set-key [backspace] 'backward-delete-char)
					; (global-set-key [delete] 'delete-char)
 (standard-display-european t)
 (load-library "iso-transl")))

;; X11 or PC using direct screen writes
(if window-system
 (progn
 ;; (global-set-key [M-f1] 'hilit-repaint-command)
 ;; (global-set-key [M-f2] [?\C-u M-f1])
 (setq hilit-mode-enable-list
	 '(not text-mode c-mode c++-mode emacs-lisp-mode lisp-mode
		 scheme-mode)
	 hilit-auto-highlight nil
	 hilit-auto-rehighlight 'visible
	 hilit-inhibit-hooks nil
	 hilit-inhibit-rebinding t)
 (require 'hilit19)
 (require 'paren))
 (setq baud-rate 2400)			; For slow serial connections
)

;; TTY type terminal
(if (and (not window-system)
	 (not (equal system-type 'ms-dos)))
 (progn
 (if first-time
	 (progn
	 (keyboard-translate ?\C-h ?\C-?)
	 (keyboard-translate ?\C-? ?\C-h)))))

;; Under UNIX
(if (not (equal system-type 'ms-dos))
 (progn
 (if first-time
	 (server-start))))

;; Add any face changes here
(add-hook 'term-setup-hook 'my-term-setup-hook)
(defun my-term-setup-hook ()
 (if (eq window-system 'pc)
 (progn
;;	(set-face-background 'default "red")
)))

;; Restore the "desktop" - do this as late as possible
(if first-time
 (progn
 (desktop-load-default)
 (desktop-read)))

;; Indicate that this file has been read at least once
(setq first-time nil)

;; No need to debug anything now

(setq debug-on-error nil)

;; All done
(message "All done, %s%s" (user-login-name) ".")
	

2.7.4. Extending the Range of Languages Emacs Understands
Now, this is all very well if you only want to program in
	the languages already catered for in the
	.emacs file (C, C++, Perl, Lisp and
	Scheme), but what happens if a new language called
	“whizbang” comes out, full of exciting
	features?
The first thing to do is find out if whizbang comes with
	any files that tell Emacs about the language. These usually
	end in .el, short for “Emacs
	 Lisp”. For example, if whizbang is a FreeBSD port, we
	can locate these files by doing
% find /usr/ports/lang/whizbang -name "*.el" -print
and install them by copying them into the Emacs site Lisp
	directory. On FreeBSD 2.1.0-RELEASE, this is
	/usr/local/share/emacs/site-lisp.
So for example, if the output from the find command
	was
/usr/ports/lang/whizbang/work/misc/whizbang.el
we would do
cp /usr/ports/lang/whizbang/work/misc/whizbang.el /usr/local/share/emacs/site-lisp
Next, we need to decide what extension whizbang source
	files have. Let's say for the sake of argument that they all
	end in .wiz. We need to add an entry to
	our .emacs file to make sure Emacs will
	be able to use the information in
	whizbang.el.
Find the auto-mode-alist entry in
	.emacs and add a line for whizbang, such
	as:
…
("\\.lsp$" . lisp-mode)
("\\.wiz$" . whizbang-mode)
("\\.scm$" . scheme-mode)
…
This means that Emacs will automatically go into
	whizbang-mode when you edit a file ending
	in .wiz.
Just below this, you will find the
	font-lock-auto-mode-list entry. Add
	whizbang-mode to it like so:
;; Auto font lock mode
(defvar font-lock-auto-mode-list
 (list 'c-mode 'c++-mode 'c++-c-mode 'emacs-lisp-mode 'whizbang-mode 'lisp-mode 'perl-mode 'scheme-mode)
 "List of modes to always start in font-lock-mode")
This means that Emacs will always enable
	font-lock-mode (ie syntax highlighting)
	when editing a .wiz file.
And that is all that is needed. If there is anything else
	you want done automatically when you open up a
	.wiz file, you can add a
	whizbang-mode hook (see
	my-scheme-mode-hook for a simple example
	that adds auto-indent).

[7] Some powerful, free IDEs now exist, such as KDevelop
	 in the ports collection.

[8] Many Emacs users set their EDITOR
		environment to
		emacsclient so this happens every
		time they need to edit a file.

2.8. Further Reading
For information about setting up a development environment
 for contributing fixes to FreeBSD itself, please see
 development(7).
	Brian Harvey and Matthew Wright
	 Simply Scheme
	 MIT 1994.
	 ISBN 0-262-08226-8

	Randall Schwartz
	 Learning Perl
	 O'Reilly 1993
	 ISBN 1-56592-042-2

	Patrick Henry Winston and Berthold Klaus Paul Horn
	 Lisp (3rd Edition)
	 Addison-Wesley 1989
	 ISBN 0-201-08319-1

	Brian W. Kernighan and Rob Pike
	 The Unix Programming Environment
	 Prentice-Hall 1984
	 ISBN 0-13-937681-X

	Brian W. Kernighan and Dennis M. Ritchie
	 The C Programming Language (2nd Edition)
	 Prentice-Hall 1988
	 ISBN 0-13-110362-8

	Bjarne Stroustrup
	The C++ Programming Language
	Addison-Wesley 1991
	ISBN 0-201-53992-6

	W. Richard Stevens
	 Advanced Programming in the Unix Environment
	 Addison-Wesley 1992
	 ISBN 0-201-56317-7

	W. Richard Stevens
	 Unix Network Programming
	 Prentice-Hall 1990
	 ISBN 0-13-949876-1

章 3. Secure Programming
Contributed by Murray Stokely. 3.1. Synopsis
This chapter describes some of the security issues that
 have plagued UNIX® programmers for decades and some of the new
 tools available to help programmers avoid writing exploitable
 code.
3.2. Secure Design
 Methodology
Writing secure applications takes a very scrutinous and
 pessimistic outlook on life. Applications should be run with
 the principle of “least privilege” so that no
 process is ever running with more than the bare minimum access
 that it needs to accomplish its function. Previously tested
 code should be reused whenever possible to avoid common
 mistakes that others may have already fixed.
One of the pitfalls of the UNIX® environment is how easy it
 is to make assumptions about the sanity of the environment.
 Applications should never trust user input (in all its forms),
 system resources, inter-process communication, or the timing of
 events. UNIX® processes do not execute synchronously so logical
 operations are rarely atomic.
3.3. Buffer Overflows
Buffer Overflows have been around since the very
 beginnings of the Von-Neuman 1 architecture.

 They first gained widespread notoriety in 1988 with the Morris
 Internet worm. Unfortunately, the same basic attack remains

 effective today. Of the 17 CERT security advisories of 1999, 10

 of them were directly caused by buffer-overflow software bugs.
 By far the most common type of buffer overflow attack is based
 on corrupting the stack.
Most modern computer systems use a stack to pass arguments
 to procedures and to store local variables. A stack is a last
 in first out (LIFO) buffer in the high memory area of a process
 image. When a program invokes a function a new "stack frame" is

 created. This stack frame consists of the arguments passed to
 the function as well as a dynamic amount of local variable
 space. The "stack pointer" is a register that holds the current

 location of the top of the stack. Since this value is
 constantly changing as new values are pushed onto the top of the
 stack, many implementations also provide a "frame pointer" that
 is located near the beginning of a stack frame so that local
 variables can more easily be addressed relative to this
 value. 1 The return address for function

 calls is also stored on the stack, and this is the cause of
 stack-overflow exploits since overflowing a local variable in a
 function can overwrite the return address of that function,
 potentially allowing a malicious user to execute any code he or
 she wants.
Although stack-based attacks are by far the most common,
 it would also be possible to overrun the stack with a heap-based
 (malloc/free) attack.
The C programming language does not perform automatic
 bounds checking on arrays or pointers as many other languages
 do. In addition, the standard C library is filled with a
 handful of very dangerous functions.
	strcpy(char *dest, const char
 *src)	May overflow the dest buffer

	strcat(char *dest, const char
 *src)	May overflow the dest buffer

	getwd(char *buf)	May overflow the buf buffer

	gets(char *s)	May overflow the s buffer

	[vf]scanf(const char *format,
 ...)	May overflow its arguments.

	realpath(char *path, char
 resolved_path[])	May overflow the path buffer

	[v]sprintf(char *str, const char
 *format, ...)	May overflow the str buffer.

3.3.1. Example Buffer Overflow
The following example code contains a buffer overflow
 designed to overwrite the return address and skip the
 instruction immediately following the function call. (Inspired
 by 4)
#include stdio.h

void manipulate(char *buffer) {
 char newbuffer[80];
 strcpy(newbuffer,buffer);
}

int main() {
 char ch,buffer[4096];
 int i=0;

 while ((buffer[i++] = getchar()) != '\n') {};

 i=1;
 manipulate(buffer);
 i=2;
 printf("The value of i is : %d\n",i);
 return 0;
}
Let us examine what the memory image of this process would
 look like if we were to input 160 spaces into our little program
 before hitting return.
[XXX figure here!]
Obviously more malicious input can be devised to execute
 actual compiled instructions (such as exec(/bin/sh)).
3.3.2. Avoiding Buffer Overflows
The most straightforward solution to the problem of
 stack-overflows is to always use length restricted memory and
 string copy functions. strncpy and
 strncat are part of the standard C library.

 These functions accept a length value as a parameter which
 should be no larger than the size of the destination buffer.
 These functions will then copy up to `length' bytes from the
 source to the destination. However there are a number of
 problems with these functions. Neither function guarantees NUL
 termination if the size of the input buffer is as large as the

 destination. The length parameter is also used inconsistently
 between strncpy and strncat so it is easy for programmers to get
 confused as to their proper usage. There is also a significant
 performance loss compared to strcpy when
 copying a short string into a large buffer since
 strncpy NUL fills up the size
 specified.
In OpenBSD, another memory copy implementation has been

 created to get around these problem. The
 strlcpy and strlcat
 functions guarantee that they will always null terminate the
 destination string when given a non-zero length argument. For
 more information about these functions see 6. The OpenBSD strlcpy and
 strlcat instructions have been in FreeBSD
 since 3.3.
3.3.2.1. Compiler based run-time bounds checking
Unfortunately there is still a very large assortment of
 code in public use which blindly copies memory around without
 using any of the bounded copy routines we just discussed.
 Fortunately, there is another solution. Several compiler
 add-ons and libraries exist to do Run-time bounds checking in
 C/C++.
StackGuard is one such add-on that is implemented as a
 small patch to the gcc code generator. From the StackGuard
 website:

"StackGuard detects and defeats stack
 smashing attacks by protecting the return address on the stack
 from being altered. StackGuard places a "canary" word next to
 the return address when a function is called. If the canary
 word has been altered when the function returns, then a stack
 smashing attack has been attempted, and the program responds
 by emitting an intruder alert into syslog, and then
 halts."

"StackGuard is implemented as a small patch
 to the gcc code generator, specifically the function_prolog()
 and function_epilog() routines. function_prolog() has been
 enhanced to lay down canaries on the stack when functions
 start, and function_epilog() checks canary integrity when the
 function exits. Any attempt at corrupting the return address
 is thus detected before the function
 returns."

Recompiling your application with StackGuard is an
 effective means of stopping most buffer-overflow attacks, but
 it can still be compromised.
3.3.2.2. Library based run-time bounds checking
Compiler-based mechanisms are completely useless for
 binary-only software for which you cannot recompile. For
 these situations there are a number of libraries which
 re-implement the unsafe functions of the C-library
 (strcpy, fscanf,
 getwd, etc..) and ensure that these
 functions can never write past the stack pointer.
	libsafe
	libverify
	libparanoia

Unfortunately these library-based defenses have a number
 of shortcomings. These libraries only protect against a very
 small set of security related issues and they neglect to fix
 the actual problem. These defenses may fail if the
 application was compiled with -fomit-frame-pointer. Also, the
 LD_PRELOAD and LD_LIBRARY_PATH environment variables can be
 overwritten/unset by the user.
3.4. SetUID issues
There are at least 6 different IDs associated with any
 given process. Because of this you have to be very careful with
 the access that your process has at any given time. In
 particular, all seteuid applications should give up their
 privileges as soon as it is no longer required.
The real user ID can only be changed by a superuser
 process. The login program sets this
 when a user initially logs in and it is seldom changed.
The effective user ID is set by the
 exec() functions if a program has its
 seteuid bit set. An application can call
 seteuid() at any time to set the effective
 user ID to either the real user ID or the saved set-user-ID.
 When the effective user ID is set by exec()
 functions, the previous value is saved in the saved set-user-ID.
3.5. Limiting your program's environment
The traditional method of restricting a process
 is with the chroot() system call. This
 system call changes the root directory from which all other
 paths are referenced for a process and any child processes. For
 this call to succeed the process must have execute (search)
 permission on the directory being referenced. The new
 environment does not actually take effect until you
 chdir() into your new environment. It
 should also be noted that a process can easily break out of a
 chroot environment if it has root privilege. This could be
 accomplished by creating device nodes to read kernel memory,
 attaching a debugger to a process outside of the jail, or in
 many other creative ways.
The behavior of the chroot() system
 call can be controlled somewhat with the
 kern.chroot_allow_open_directories sysctl
 variable. When this value is set to 0,
 chroot() will fail with EPERM if there are
 any directories open. If set to the default value of 1, then
 chroot() will fail with EPERM if there are
 any directories open and the process is already subject to a
 chroot() call. For any other value, the
 check for open directories will be bypassed completely.
3.5.1. FreeBSD's jail functionality
The concept of a Jail extends upon the
 chroot() by limiting the powers of the
 superuser to create a true `virtual server'. Once a prison is
 set up all network communication must take place through the
 specified IP address, and the power of "root privilege" in this
 jail is severely constrained.
While in a prison, any tests of superuser power within the
 kernel using the suser() call will fail.
 However, some calls to suser() have been
 changed to a new interface suser_xxx().
 This function is responsible for recognizing or denying access
 to superuser power for imprisoned processes.
A superuser process within a jailed environment has the
 power to:
	Manipulate credential with
 setuid, seteuid,
 setgid, setegid,
 setgroups, setreuid,
 setregid, setlogin
	Set resource limits with setrlimit
	Modify some sysctl nodes
 (kern.hostname)
	chroot()
	Set flags on a vnode:
 chflags,
 fchflags
	Set attributes of a vnode such as file
 permission, owner, group, size, access time, and modification
 time.
	Bind to privileged ports in the Internet
 domain (ports < 1024)

Jail is a very useful tool for
 running applications in a secure environment but it does have
 some shortcomings. Currently, the IPC mechanisms have not been
 converted to the suser_xxx so applications
 such as MySQL cannot be run within a jail. Superuser access
 may have a very limited meaning within a jail, but there is
 no way to specify exactly what "very limited" means.
3.5.2. POSIX®.1e Process Capabilities
POSIX® has released a working draft that adds event
 auditing, access control lists, fine grained privileges,
 information labeling, and mandatory access control.
This is a work in progress and is the focus of the TrustedBSD project. Some
 of the initial work has been committed to FreeBSD-CURRENT
 (cap_set_proc(3)).
3.6. Trust
An application should never assume that anything about the
 users environment is sane. This includes (but is certainly not
 limited to): user input, signals, environment variables,
 resources, IPC, mmaps, the filesystem working directory, file
 descriptors, the # of open files, etc.
You should never assume that you can catch all forms of
 invalid input that a user might supply. Instead, your
 application should use positive filtering to only allow a
 specific subset of inputs that you deem safe. Improper data
 validation has been the cause of many exploits, especially with
 CGI scripts on the world wide web. For filenames you need to be
 extra careful about paths ("../", "/"), symbolic links, and
 shell escape characters.
Perl has a really cool feature called "Taint" mode which
 can be used to prevent scripts from using data derived outside
 the program in an unsafe way. This mode will check command line
 arguments, environment variables, locale information, the
 results of certain syscalls (readdir(),
 readlink(),
 getpwxxx(), and all file input.
3.7. Race Conditions
A race condition is anomalous behavior caused by the
 unexpected dependence on the relative timing of events. In
 other words, a programmer incorrectly assumed that a particular
 event would always happen before another.
Some of the common causes of race conditions are signals,
 access checks, and file opens. Signals are asynchronous events
 by nature so special care must be taken in dealing with them.
 Checking access with access(2) then
 open(2) is clearly non-atomic. Users can
 move files in between the two calls. Instead, privileged
 applications should seteuid() and then call
 open() directly. Along the same lines, an
 application should always set a proper umask before
 open() to obviate the need for spurious
 chmod() calls.
章 4. Localization and Internationalization - L10N and I18N
4.1. Programming I18N Compliant Applications
To make your application more useful for speakers of other
	languages, we hope that you will program I18N compliant. The GNU
	gcc compiler and GUI libraries like QT and GTK support I18N through
	special handling of strings. Making a program I18N compliant is
	very easy. It allows contributors to port your application to
	other languages quickly. Refer to the library specific I18N
	documentation for more details.
In contrast with common perception, I18N compliant code is
	easy to write. Usually, it only involves wrapping your strings
	with library specific functions. In addition, please be sure to
	allow for wide or multibyte character support.
4.1.1. A Call to Unify the I18N Effort
It has come to our attention that the individual I18N/L10N
	 efforts for each country has been repeating each others'
	 efforts. Many of us have been reinventing the wheel repeatedly
	 and inefficiently. We hope that the various major groups in
	 I18N could congregate into a group effort similar to the Core
	 Team's responsibility.
Currently, we hope that, when you write or port I18N
	 programs, you would send it out to each country's related
	 FreeBSD mailing list for testing. In the future, we hope to
	 create applications that work in all the languages
	 out-of-the-box without dirty hacks.
The FreeBSD internationalization 郵遞論壇 has been established. If you are an I18N/L10N
	 developer, please send your comments, ideas, questions, and
	 anything you deem related to it.
4.1.2. Perl and Python
Perl and Python have I18N and wide character handling
	 libraries. Please use them for I18N compliance.
In older FreeBSD versions,
	 Perl may give warnings about not having a wide character locale
	 installed on your system. You can set the
	 environment variable LD_PRELOAD to
	 /usr/lib/libxpg4.so in your shell.
In sh-based shells:
LD_PRELOAD=/usr/lib/libxpg4.so
In C-based shells:
setenv LD_PRELOAD /usr/lib/libxpg4.so
章 5. Source Tree Guidelines and Policies
Contributed by Poul-Henning Kamp. This chapter documents various guidelines and policies in force for
 the FreeBSD source tree.
5.1. MAINTAINER on Makefiles
If a particular portion of the FreeBSD distribution is being
 maintained by a person or group of persons, they can communicate this
 fact to the world by adding a

MAINTAINER= email-addresses

 line to the Makefiles covering this portion of the
 source tree.
The semantics of this are as follows:
The maintainer owns and is responsible for that code. This means
 that he is responsible for fixing bugs and answering problem reports
 pertaining to that piece of the code, and in the case of contributed
 software, for tracking new versions, as appropriate.
Changes to directories which have a maintainer defined shall be sent
 to the maintainer for review before being committed. Only if the
 maintainer does not respond for an unacceptable period of time, to
 several emails, will it be acceptable to commit changes without review
 by the maintainer. However, it is suggested that you try to have the
 changes reviewed by someone else if at all possible.
It is of course not acceptable to add a person or group as
 maintainer unless they agree to assume this duty. On the other hand it
 does not have to be a committer and it can easily be a group of
 people.
5.2. Contributed Software
Contributed by Poul-Henning Kamp 且 David O'Brien. Some parts of the FreeBSD distribution consist of software that is
 actively being maintained outside the FreeBSD project. For historical
 reasons, we call this contributed software. Some
 examples are sendmail, gcc and patch.
Over the last couple of years, various methods have been used in
 dealing with this type of software and all have some number of
 advantages and drawbacks. No clear winner has emerged.
Since this is the case, after some debate one of these methods has
 been selected as the “official” method and will be required
 for future imports of software of this kind. Furthermore, it is
 strongly suggested that existing contributed software converge on this
 model over time, as it has significant advantages over the old method,
 including the ability to easily obtain diffs relative to the
 “official” versions of the source by everyone (even without
 cvs access). This will make it significantly easier to return changes
 to the primary developers of the contributed software.
Ultimately, however, it comes down to the people actually doing the
 work. If using this model is particularly unsuited to the package being
 dealt with, exceptions to these rules may be granted only with the
 approval of the core team and with the general consensus of the other
 developers. The ability to maintain the package in the future will be a
 key issue in the decisions.
注意:
Because of some unfortunate design limitations with the RCS file
	format and CVS's use of vendor branches, minor, trivial and/or
	cosmetic changes are strongly discouraged on
	files that are still tracking the vendor branch. “Spelling
	fixes” are explicitly included here under the
	“cosmetic” category and are to be avoided for files with
	revision 1.1.x.x. The repository bloat impact from a single character
	change can be rather dramatic.

The Tcl embedded programming
 language will be used as example of how this model works:
src/contrib/tcl contains the source as
 distributed by the maintainers of this package. Parts that are entirely
 not applicable for FreeBSD can be removed. In the case of Tcl, the
 mac, win and
 compat subdirectories were eliminated before the
 import.
src/lib/libtcl contains only a bmake style
 Makefile that uses the standard
 bsd.lib.mk makefile rules to produce the library
 and install the documentation.
src/usr.bin/tclsh contains only a bmake style
 Makefile which will produce and install the
 tclsh program and its associated man-pages using the
 standard bsd.prog.mk rules.
src/tools/tools/tcl_bmake contains a couple of
 shell-scripts that can be of help when the tcl software needs updating.
 These are not part of the built or installed software.
The important thing here is that the
 src/contrib/tcl directory is created according to
 the rules: it is supposed to contain the sources as distributed (on a
 proper CVS vendor-branch and without RCS keyword expansion) with as few
 FreeBSD-specific changes as possible. The 'easy-import' tool on
 freefall will assist in doing the import, but if there are any doubts on
 how to go about it, it is imperative that you ask first and not blunder
 ahead and hope it “works out”. CVS is not forgiving of
 import accidents and a fair amount of effort is required to back out
 major mistakes.
Because of the previously mentioned design limitations with CVS's
 vendor branches, it is required that “official” patches from
 the vendor be applied to the original distributed sources and the result
 re-imported onto the vendor branch again. Official patches should never
 be patched into the FreeBSD checked out version and “committed”, as this
 destroys the vendor branch coherency and makes importing future versions
 rather difficult as there will be conflicts.
Since many packages contain files that are meant for compatibility
 with other architectures and environments that FreeBSD, it is
 permissible to remove parts of the distribution tree that are of no
 interest to FreeBSD in order to save space. Files containing copyright
 notices and release-note kind of information applicable to the remaining
 files shall not be removed.
If it seems easier, the bmake
 Makefiles can be produced from the dist tree
 automatically by some utility, something which would hopefully make it
 even easier to upgrade to a new version. If this is done, be sure to
 check in such utilities (as necessary) in the
 src/tools directory along with the port itself so
 that it is available to future maintainers.
In the src/contrib/tcl level directory, a file
 called FREEBSD-upgrade should be added and it
 should state things like:
	Which files have been left out.

	Where the original distribution was obtained from and/or the
	 official master site.

	Where to send patches back to the original authors.

	Perhaps an overview of the FreeBSD-specific changes that have
	 been made.

However, please do not import FREEBSD-upgrade
 with the contributed source. Rather you should cvs add
	FREEBSD-upgrade ; cvs ci after the initial import. Example
 wording from src/contrib/cpio is below:
This directory contains virgin sources of the original distribution files
on a "vendor" branch. Do not, under any circumstances, attempt to upgrade
the files in this directory via patches and a cvs commit. New versions or
official-patch versions must be imported. Please remember to import with
"-ko" to prevent CVS from corrupting any vendor RCS Ids.

For the import of GNU cpio 2.4.2, the following files were removed:

 INSTALL cpio.info mkdir.c
 Makefile.in cpio.texi mkinstalldirs

To upgrade to a newer version of cpio, when it is available:
 1. Unpack the new version into an empty directory.
 [Do not make ANY changes to the files.]

 2. Remove the files listed above and any others that don't apply to
 FreeBSD.

 3. Use the command:
 cvs import -ko -m 'Virgin import of GNU cpio v<version>' \
 src/contrib/cpio GNU cpio_<version>

 For example, to do the import of version 2.4.2, I typed:
 cvs import -ko -m 'Virgin import of GNU v2.4.2' \
 src/contrib/cpio GNU cpio_2_4_2

 4. Follow the instructions printed out in step 3 to resolve any
 conflicts between local FreeBSD changes and the newer version.

Do not, under any circumstances, deviate from this procedure.

To make local changes to cpio, simply patch and commit to the main
branch (aka HEAD). Never make local changes on the GNU branch.

All local changes should be submitted to "cpio@gnu.ai.mit.edu" for
inclusion in the next vendor release.

obrien@FreeBSD.org - 30 March 1997
5.3. Encumbered Files
It might occasionally be necessary to include an encumbered file in
 the FreeBSD source tree. For example, if a device requires a small
 piece of binary code to be loaded to it before the device will operate,
 and we do not have the source to that code, then the binary file is said
 to be encumbered. The following policies apply to including encumbered
 files in the FreeBSD source tree.
	Any file which is interpreted or executed by the system CPU(s)
	 and not in source format is encumbered.

	Any file with a license more restrictive than BSD or GNU is
	 encumbered.

	A file which contains downloadable binary data for use by the
	 hardware is not encumbered, unless (1) or (2) apply to it. It must
	 be stored in an architecture neutral ASCII format (file2c or
	 uuencoding is recommended).

	Any encumbered file requires specific approval from the
	 Core team before it is added to the
	 CVS repository.

	Encumbered files go in src/contrib or
	 src/sys/contrib.

	The entire module should be kept together. There is no point in
	 splitting it, unless there is code-sharing with non-encumbered
	 code.

	Object files are named
	 arch/filename.o.uu>.

	Kernel files:
	Should always be referenced in
 conf/files.* (for build simplicity).

	Should always be in LINT, but the
	 Core team decides per case if it
	 should be commented out or not. The
	 Core team can, of course, change
	 their minds later on.

	The Release Engineer
 decides whether or not it goes into the release.

	User-land files:
	The Core team decides if
 the code should be part of make world.

	The Release Engineer
 decides if it goes into the release.

5.4. Shared Libraries
Contributed by Satoshi Asami, Peter Wemm 且 David O'Brien. If you are adding shared library support to a port or other piece of
 software that does not have one, the version numbers should follow these
 rules. Generally, the resulting numbers will have nothing to do with
 the release version of the software.
The three principles of shared library building are:
	Start from 1.0

	If there is a change that is backwards compatible, bump minor
	 number (note that ELF systems ignore the minor number)

	If there is an incompatible change, bump major number

For instance, added functions and bugfixes result in the minor
 version number being bumped, while deleted functions, changed function
 call syntax, etc. will force the major version number to change.
Stick to version numbers of the form major.minor
 (x.y). Our a.out
 dynamic linker does not handle version numbers of the form
 x.y.z
 well. Any version number after the y
 (i.e. the third digit) is totally ignored when comparing shared lib
 version numbers to decide which library to link with. Given two shared
 libraries that differ only in the “micro” revision,
 ld.so will link with the higher one. That is, if you link
 with libfoo.so.3.3.3, the linker only records
 3.3 in the headers, and will link with anything
 starting with
 libfoo.so.3.(anything >=
	3).(highest
	available).
注意:
ld.so will always use the highest
	“minor” revision. For instance, it will use
	libc.so.2.2 in preference to
	libc.so.2.0, even if the program was initially
	linked with libc.so.2.0.

In addition, our ELF dynamic linker does not handle minor version
 numbers at all. However, one should still specify a major and minor
 version number as our Makefiles “do the right thing”
 based on the type of system.
For non-port libraries, it is also our policy to change the shared
 library version number only once between releases. In addition, it is
 our policy to change the major shared library version number only once
 between major OS releases (i.e. from 3.0 to 4.0). When you make a
 change to a system library that requires the version number to be
 bumped, check the Makefile's commit logs. It is the
 responsibility of the committer to ensure that the first such change
 since the release will result in the shared library version number in
 the Makefile to be updated, and any subsequent
 changes will not.
章 6. Regression and Performance Testing
Regression tests are used to exercise a particular bit of the
 system to check that it works as expected, and to make sure that
 old bugs are not reintroduced.
The FreeBSD regression testing tools can be found in the FreeBSD
 source tree in the directory src/tools/regression.
6.1. Micro Benchmark Checklist
This section contains hints for doing proper
 micro-benchmarking on FreeBSD or of FreeBSD itself.
It is not possible to use all of the suggestions below every
 single time, but the more used, the better the benchmark's
 ability to test small differences will be.
	Disable APM and any other kind of
	 clock fiddling (ACPI ?).

	Run in single user mode. E.g. cron(8), and and
	 other daemons only add noise. The sshd(8) daemon can
	 also cause problems. If ssh access is required during test
	 either disable the SSHv1 key regeneration, or kill the
	 parent sshd daemon during the tests.

	Do not run ntpd(8).

	If syslog(3) events are generated, run
	 syslogd(8) with an empty
	 /etc/syslogd.conf, otherwise, do not
	 run it.

	Minimize disk-I/O, avoid it entirely if possible.

	Do not mount file systems that are not needed.

	Mount /,
	 /usr, and any other
	 file system as read-only if possible. This removes atime
	 updates to disk (etc.) from the I/O picture.

	Reinitialize the read/write test file system with
	 newfs(8) and populate it from a tar(1) or
	 dump(8) file before every run. Unmount and mount it
	 before starting the test. This results in a consistent file
	 system layout. For a worldstone test this would apply to
	 /usr/obj (just
	 reinitialize with newfs and mount). To
	 get 100% reproducibility, populate the file system from a
	 dd(1) file (i.e.: dd
	 if=myimage of=/dev/ad0s1h
	 bs=1m)

	Use malloc backed or preloaded md(4)
	 partitions.

	Reboot between individual iterations of the test, this
	 gives a more consistent state.

	Remove all non-essential device drivers from the kernel.
	 For instance if USB is not needed for the test, do not put
	 USB in the kernel. Drivers which attach often have timeouts
	 ticking away.

	Unconfigure hardware that are not in use. Detach disks
	 with atacontrol(8) and camcontrol(8) if the disks
	 are not used for the test.

	Do not configure the network unless it is being tested,
	 or wait until after the test has been performed to ship the
	 results off to another computer.
If the system must be connected to a public network,
	 watch out for spikes of broadcast traffic. Even though it
	 is hardly noticeable, it will take up CPU cycles. Multicast
	 has similar caveats.

	Put each file system on its own disk. This minimizes
	 jitter from head-seek optimizations.

	Minimize output to serial or VGA consoles. Running
	 output into files gives less jitter. (Serial consoles
	 easily become a bottleneck.) Do not touch keyboard while
	 the test is running, even space or
	 back-space shows up in the numbers.

	Make sure the test is long enough, but not too long. If
	 the test is too short, timestamping is a problem. If it is
	 too long temperature changes and drift will affect the
	 frequency of the quartz crystals in the computer. Rule of
	 thumb: more than a minute, less than an hour.

	Try to keep the temperature as stable as possible around
	 the machine. This affects both quartz crystals and disk
	 drive algorithms. To get real stable clock, consider
	 stabilized clock injection. E.g. get a OCXO + PLL, inject
	 output into clock circuits instead of motherboard xtal.
	 Contact Poul-Henning Kamp for more information about this.

	Run the test at least 3 times but it is better to run
	 more than 20 times both for “before” and
	 “after” code. Try to interleave if possible
	 (i.e.: do not run 20 times before then 20 times after), this
	 makes it possible to spot environmental effects. Do not
	 interleave 1:1, but 3:3, this makes it possible to spot
	 interaction effects.
A good pattern is: bababa{bbbaaa}*.
	 This gives hint after the first 1+1 runs (so it is possible
	 to stop the test if it goes entirely the wrong way), a
	 standard deviation after the first 3+3 (gives a good
	 indication if it is going to be worth a long run) and
	 trending and interaction numbers later on.

	Use usr/src/tools/tools/ministat
	 to see if the numbers are significant. Consider buying
	 “Cartoon guide to statistics” ISBN:
	 0062731025, highly recommended, if you have forgotten or
	 never learned about standard deviation and Student's
	 T.

	Do not use background fsck(8) unless the test is a
	 benchmark of background fsck. Also,
	 disable background_fsck in
	 /etc/rc.conf unless the benchmark is
	 not started at least 60+“fsck
	 runtime” seconds after the boot, as rc(8) wakes
	 up and checks if fsck needs to run on any
	 file systems when background fsck is
	 enabled. Likewise, make sure there are no snapshots lying
	 around unless the benchmark is a test with snapshots.

	If the benchmark show unexpected bad performance, check
	 for things like high interrupt volume from an unexpected
	 source. Some versions of ACPI have been
	 reported to “misbehave” and generate excess
	 interrupts. To help diagnose odd test results, take a few
	 snapshots of vmstat -i and look for
	 anything unusual.

	Make sure to be careful about optimization parameters
	 for kernel and userspace, likewise debugging. It is easy to
	 let something slip through and realize later the test was
	 not comparing the same thing.

	Do not ever benchmark with the
	 WITNESS and INVARIANTS
	 kernel options enabled unless the test is interested to
	 benchmarking those features. WITNESS can
	 cause 400%+ drops in performance. Likewise, userspace
	 malloc(3) parameters default differently in -CURRENT
	 from the way they ship in production releases.

部 II. Interprocess Communication(IPC)

章 7. Sockets
Contributed by G. Adam Stanislav. 7.1. Synopsis
BSD sockets take interprocess
 communications to a new level. It is no longer necessary for the
 communicating processes to run on the same machine. They still
 can, but they do not have to.
Not only do these processes not have to run on the same
 machine, they do not have to run under the same operating
 system. Thanks to BSD sockets, your FreeBSD
 software can smoothly cooperate with a program running on a
 Macintosh®, another one running on a Sun™ workstation, yet another
 one running under Windows® 2000, all connected with an
 Ethernet-based local area network.
But your software can equally well cooperate with processes
 running in another building, or on another continent, inside a
 submarine, or a space shuttle.
It can also cooperate with processes that are not part of a
 computer (at least not in the strict sense of the word), but of
 such devices as printers, digital cameras, medical equipment.
 Just about anything capable of digital communications.
7.2. Networking and Diversity
We have already hinted on the diversity
 of networking. Many different systems have to talk to each
 other. And they have to speak the same language. They also have
 to understand the same language the same
 way.
People often think that body language
 is universal. But it is not. Back in my early teens, my father
 took me to Bulgaria. We were sitting at a table in a park in
 Sofia, when a vendor approached us trying to sell us some
 roasted almonds.
I had not learned much Bulgarian by then, so, instead of
 saying no, I shook my head from side to side, the
 “universal” body language for
 no. The vendor quickly started serving us
 some almonds.
I then remembered I had been told that in Bulgaria shaking
 your head sideways meant yes. Quickly, I
 started nodding my head up and down. The vendor noticed, took
 his almonds, and walked away. To an uninformed observer, I did
 not change the body language: I continued using the language of
 shaking and nodding my head. What changed was the
 meaning of the body language. At first, the
 vendor and I interpreted the same language as having completely
 different meaning. I had to adjust my own interpretation of that
 language so the vendor would understand.
It is the same with computers: The same symbols may have
 different, even outright opposite meaning. Therefore, for
 two computers to understand each other, they must not only
 agree on the same language, but on the
 same interpretation of the language.

7.3. Protocols
While various programming languages tend to have complex
 syntax and use a number of multi-letter reserved words (which
 makes them easy for the human programmer to understand), the
 languages of data communications tend to be very terse. Instead
 of multi-byte words, they often use individual
 bits. There is a very convincing reason
 for it: While data travels inside your
 computer at speeds approaching the speed of light, it often
 travels considerably slower between two computers.
Because the languages used in data communications are so
 terse, we usually refer to them as
 protocols rather than languages.
As data travels from one computer to another, it always uses
 more than one protocol. These protocols are
 layered. The data can be compared to the
 inside of an onion: You have to peel off several layers of
 “skin” to get to the data. This is best
 illustrated with a picture:
[image: Protocol Layers]
In this example, we are trying to get an image from a web
 page we are connected to via an Ethernet.
The image consists of raw data, which is simply a sequence
 of RGB values that our software can process,
 i.e., convert into an image and display on our monitor.
Alas, our software has no way of knowing how the raw data is
 organized: Is it a sequence of RGB values, or
 a sequence of grayscale intensities, or perhaps of
 CMYK encoded colors? Is the data represented
 by 8-bit quanta, or are they 16 bits in size, or perhaps 4 bits?
 How many rows and columns does the image consist of? Should
 certain pixels be transparent?
I think you get the picture...
To inform our software how to handle the raw data, it is
 encoded as a PNG file. It could be a
 GIF, or a JPEG, but it is
 a PNG.
And PNG is a protocol.
At this point, I can hear some of you yelling,
 “No, it is not! It is a file
 format!”
Well, of course it is a file format. But from the
 perspective of data communications, a file format is a protocol:
 The file structure is a language, a terse
 one at that, communicating to our process
 how the data is organized. Ergo, it is a
 protocol.
Alas, if all we received was the PNG
 file, our software would be facing a serious problem: How is it
 supposed to know the data is representing an image, as opposed
 to some text, or perhaps a sound, or what not? Secondly, how is
 it supposed to know the image is in the PNG
 format as opposed to GIF, or
 JPEG, or some other image format?
To obtain that information, we are using another protocol:
 HTTP. This protocol can tell us exactly that
 the data represents an image, and that it uses the
 PNG protocol. It can also tell us some other
 things, but let us stay focused on protocol layers here.

So, now we have some data wrapped in the PNG
 protocol, wrapped in the HTTP protocol.
 How did we get it from the server?
By using TCP/IP over Ethernet, that is
 how. Indeed, that is three more protocols. Instead of
 continuing inside out, I am now going to talk about Ethernet,
 simply because it is easier to explain the rest that way.
Ethernet is an interesting system of connecting computers in
 a local area network
 (LAN). Each computer has a network
 interface card (NIC), which has a
 unique 48-bit ID called its
 address. No two Ethernet
 NICs in the world have the same address.

These NICs are all connected with each
 other. Whenever one computer wants to communicate with another
 in the same Ethernet LAN, it sends a message
 over the network. Every NIC sees the
 message. But as part of the Ethernet
 protocol, the data contains the address of
 the destination NIC (among other things). So,
 only one of all the network interface cards will pay attention
 to it, the rest will ignore it.
But not all computers are connected to the same
 network. Just because we have received the data over our
 Ethernet does not mean it originated in our own local area
 network. It could have come to us from some other network (which
 may not even be Ethernet based) connected with our own network
 via the Internet.
All data is transferred over the Internet using
 IP, which stands for Internet
 Protocol. Its basic role is to let us know where in
 the world the data has arrived from, and where it is supposed to
 go to. It does not guarantee we will
 receive the data, only that we will know where it came from
 if we do receive it.
Even if we do receive the data, IP does
 not guarantee we will receive various chunks of data in the same
 order the other computer has sent it to us. So, we can receive
 the center of our image before we receive the upper left corner
 and after the lower right, for example.
It is TCP (Transmission Control
 Protocol) that asks the sender to resend any lost
 data and that places it all into the proper order.
All in all, it took five different
 protocols for one computer to communicate to another what an
 image looks like. We received the data wrapped into the
 PNG protocol, which was wrapped into the
 HTTP protocol, which was wrapped into the
 TCP protocol, which was wrapped into the
 IP protocol, which was wrapped into the
 Ethernet protocol.
Oh, and by the way, there probably were several other
 protocols involved somewhere on the way. For example, if our
 LAN was connected to the Internet through a
 dial-up call, it used the PPP protocol over
 the modem which used one (or several) of the various modem
 protocols, et cetera, et cetera, et cetera...
As a developer you should be asking by now,
 “How am I supposed to handle it
 all?”
Luckily for you, you are not supposed
 to handle it all. You are supposed to
 handle some of it, but not all of it. Specifically, you need not
 worry about the physical connection (in our case Ethernet and
 possibly PPP, etc). Nor do you need to handle
 the Internet Protocol, or the Transmission Control
 Protocol.
In other words, you do not have to do anything to receive
 the data from the other computer. Well, you do have to
 ask for it, but that is almost as simple as
 opening a file.
Once you have received the data, it is up to you to figure
 out what to do with it. In our case, you would need to
 understand the HTTP protocol and the
 PNG file structure.
To use an analogy, all the internetworking protocols become
 a gray area: Not so much because we do not understand how it
 works, but because we are no longer concerned about it. The
 sockets interface takes care of this gray area for us:
[image: Sockets Covered Protocol Layers]
We only need to understand any protocols that tell us how to
 interpret the data, not how to
 receive it from another process, nor how to
 send it to another process.
7.4. The Sockets Model
BSD sockets are built on the basic UNIX®
 model: Everything is a file. In our
 example, then, sockets would let us receive an HTTP
 file, so to speak. It would then be up to us to
 extract the PNG file
 from it.

Because of the complexity of internetworking, we cannot just
 use the open system call, or
 the open() C function. Instead, we need to
 take several steps to “opening” a socket.
Once we do, however, we can start treating the
 socket the same way we treat any
 file descriptor: We can
 read from it, write to
 it, pipe it, and, eventually,
 close it.
7.5. Essential Socket Functions
While FreeBSD offers different functions to work with
 sockets, we only need four to
 “open” a socket. And in some cases we only need
 two.
7.5.1. The Client-Server Difference
Typically, one of the ends of a socket-based data
 communication is a server, the other is a
 client.
7.5.1.1. The Common Elements
7.5.1.1.1. socket
The one function used by both, clients and servers, is
	 socket(2). It is declared this way:

int socket(int domain, int type, int protocol);

The return value is of the same type as that of
	 open, an integer. FreeBSD allocates
	 its value from the same pool as that of file handles.
	 That is what allows sockets to be treated the same way as
	 files.
The domain argument tells the
	 system what protocol family you want
	 it to use. Many of them exist, some are vendor specific,
	 others are very common. They are declared in
	 sys/socket.h.
Use PF_INET for
	 UDP, TCP and other
	 Internet protocols (IPv4).
Five values are defined for the
	 type argument, again, in
	 sys/socket.h. All of them start with
	 “SOCK_”. The most
	 common one is SOCK_STREAM, which
	 tells the system you are asking for a reliable
	 stream delivery service (which is
	 TCP when used with
	 PF_INET).
If you asked for SOCK_DGRAM, you
	 would be requesting a connectionless datagram
	 delivery service (in our case,
	 UDP).
If you wanted to be in charge of the low-level
	 protocols (such as IP), or even network
	 interfaces (e.g., the Ethernet), you would need to specify
	 SOCK_RAW.
Finally, the protocol argument
	 depends on the previous two arguments, and is not always
	 meaningful. In that case, use 0 for
	 its value.
The Unconnected Socket:
Nowhere, in the socket function
	 have we specified to what other system we should be
	 connected. Our newly created socket remains
	 unconnected.
This is on purpose: To use a telephone analogy, we
	 have just attached a modem to the phone line. We have
	 neither told the modem to make a call, nor to answer if
	 the phone rings.

7.5.1.1.2. sockaddr
Various functions of the sockets family expect the
 	 address of (or pointer to, to use C terminology) a small
 	 area of the memory. The various C declarations in the
 	 sys/socket.h refer to it as
 	 struct sockaddr. This structure is
 	 declared in the same file:

/*
 * Structure used by kernel to store most
 * addresses.
 */
struct sockaddr {
	unsigned char	sa_len;		/* total length */
	sa_family_t	sa_family;	/* address family */
	char		sa_data[14];	/* actually longer; address value */
};
#define	SOCK_MAXADDRLEN	255		/* longest possible addresses */

Please note the vagueness with
	 which the sa_data field is declared,
	 just as an array of 14 bytes, with
	 the comment hinting there can be more than
	 14 of them.
This vagueness is quite deliberate. Sockets is a very
	 powerful interface. While most people perhaps think of it
	 as nothing more than the Internet interface——and most
	 applications probably use it for that
	 nowadays——sockets can be used for just about
	 any kind of interprocess
	 communications, of which the Internet (or, more precisely,
	 IP) is only one.
The sys/socket.h refers to the
	 various types of protocols sockets will handle as
	 address families, and lists them
	 right before the definition of
	 sockaddr:

/*
 * Address families.
 */
#define	AF_UNSPEC	0		/* unspecified */
#define	AF_LOCAL	1		/* local to host (pipes, portals) */
#define	AF_UNIX		AF_LOCAL	/* backward compatibility */
#define	AF_INET		2		/* internetwork: UDP, TCP, etc. */
#define	AF_IMPLINK	3		/* arpanet imp addresses */
#define	AF_PUP		4		/* pup protocols: e.g. BSP */
#define	AF_CHAOS	5		/* mit CHAOS protocols */
#define	AF_NS		6		/* XEROX NS protocols */
#define	AF_ISO		7		/* ISO protocols */
#define	AF_OSI		AF_ISO
#define	AF_ECMA		8		/* European computer manufacturers */
#define	AF_DATAKIT	9		/* datakit protocols */
#define	AF_CCITT	10		/* CCITT protocols, X.25 etc */
#define	AF_SNA		11		/* IBM SNA */
#define AF_DECnet	12		/* DECnet */
#define AF_DLI		13		/* DEC Direct data link interface */
#define AF_LAT		14		/* LAT */
#define	AF_HYLINK	15		/* NSC Hyperchannel */
#define	AF_APPLETALK	16		/* Apple Talk */
#define	AF_ROUTE	17		/* Internal Routing Protocol */
#define	AF_LINK		18		/* Link layer interface */
#define	pseudo_AF_XTP	19		/* eXpress Transfer Protocol (no AF) */
#define	AF_COIP		20		/* connection-oriented IP, aka ST II */
#define	AF_CNT		21		/* Computer Network Technology */
#define pseudo_AF_RTIP	22		/* Help Identify RTIP packets */
#define	AF_IPX		23		/* Novell Internet Protocol */
#define	AF_SIP		24		/* Simple Internet Protocol */
#define	pseudo_AF_PIP	25		/* Help Identify PIP packets */
#define	AF_ISDN		26		/* Integrated Services Digital Network*/
#define	AF_E164		AF_ISDN		/* CCITT E.164 recommendation */
#define	pseudo_AF_KEY	27		/* Internal key-management function */
#define	AF_INET6	28		/* IPv6 */
#define	AF_NATM		29		/* native ATM access */
#define	AF_ATM		30		/* ATM */
#define pseudo_AF_HDRCMPLT 31		/* Used by BPF to not rewrite headers
					 * in interface output routine
					 */
#define	AF_NETGRAPH	32		/* Netgraph sockets */
#define	AF_SLOW		33		/* 802.3ad slow protocol */
#define	AF_SCLUSTER	34		/* Sitara cluster protocol */
#define	AF_ARP		35
#define	AF_BLUETOOTH	36		/* Bluetooth sockets */
#define	AF_MAX		37

The one used for IP is
	 AF_INET. It is a symbol for the constant
	 2.
It is the address family listed
	 in the sa_family field of
	 sockaddr that decides how exactly the
	 vaguely named bytes of sa_data will be
	 used.
Specifically, whenever the address
	 family is AF_INET, we can use
	 struct sockaddr_in found in
	 netinet/in.h, wherever
	 sockaddr is expected:

/*
 * Socket address, internet style.
 */
struct sockaddr_in {
	uint8_t		sin_len;
	sa_family_t	sin_family;
	in_port_t	sin_port;
	struct	in_addr sin_addr;
	char	sin_zero[8];
};

We can visualize its organization this way:
[image: sockaddr_in]
The three important fields are
	 sin_family, which is byte 1 of the
	 structure, sin_port, a 16-bit value
	 found in bytes 2 and 3, and sin_addr, a
	 32-bit integer representation of the IP
	 address, stored in bytes 4-7.
Now, let us try to fill it out. Let us assume we are
	 trying to write a client for the
	 daytime protocol, which simply states
	 that its server will write a text string representing the
	 current date and time to port 13. We want to use
	 TCP/IP, so we need to specify
	 AF_INET in the address family
	 field. AF_INET is defined as
	 2. Let us use the
	 IP address of 192.43.244.18, which is the time
	 server of US federal government (time.nist.gov).
[image: Specific example of sockaddr_in]
By the way the sin_addr field is
 	 declared as being of the struct in_addr
 	 type, which is defined in
 	 netinet/in.h:

/*
 * Internet address (a structure for historical reasons)
 */
struct in_addr {
	in_addr_t s_addr;
};

In addition, in_addr_t is a 32-bit
 integer.
The 192.43.244.18 is
	 just a convenient notation of expressing a 32-bit integer
	 by listing all of its 8-bit bytes, starting with the
	 most significant one.
So far, we have viewed sockaddr as
	 an abstraction. Our computer does not store
	 short integers as a single 16-bit
	 entity, but as a sequence of 2 bytes. Similarly, it stores
	 32-bit integers as a sequence of 4 bytes.
Suppose we coded something like this:

	sa.sin_family = AF_INET;
	sa.sin_port = 13;
	sa.sin_addr.s_addr = (((((192 << 8) | 43) << 8) | 244) << 8) | 18;

What would the result look like?
Well, that depends, of course. On a Pentium®, or other
	 x86, based computer, it would look like this:
[image: sockaddr_in on an Intel system]
On a different system, it might look like this:
	
[image: sockaddr_in on an MSB system]
And on a PDP it might look different yet. But the
	 above two are the most common ways in use today.
Ordinarily, wanting to write portable code,
	 programmers pretend that these differences do not
	 exist. And they get away with it (except when they code in
	 assembly language). Alas, you cannot get away with it that
	 easily when coding for sockets.
Why?
Because when communicating with another computer, you
	 usually do not know whether it stores data most
	 significant byte (MSB) or
	 least significant byte
	 (LSB) first.
You might be wondering, “So, will
	 sockets not handle it for me?”
It will not.
While that answer may surprise you at first, remember
 	 that the general sockets interface only understands the
 	 sa_len and sa_family
 	 fields of the sockaddr structure. You
 	 do not have to worry about the byte order there (of
 	 course, on FreeBSD sa_family is only 1
 	 byte anyway, but many other UNIX® systems do not have
 	 sa_len and use 2 bytes for
 	 sa_family, and expect the data in
 	 whatever order is native to the computer).
But the rest of the data is just
	 sa_data[14] as far as sockets
	 goes. Depending on the address
	 family, sockets just forwards that data to its
	 destination.
Indeed, when we enter a port number, it is because we
	 want the other computer to know what service we are asking
	 for. And, when we are the server, we read the port number
	 so we know what service the other computer is expecting
	 from us. Either way, sockets only has to forward the port
	 number as data. It does not interpret it in any way.
Similarly, we enter the IP address
	 to tell everyone on the way where to send our data
	 to. Sockets, again, only forwards it as data.
That is why, we (the programmers,
	 not the sockets) have to distinguish
	 between the byte order used by our computer and a
	 conventional byte order to send the data in to the other
	 computer.
We will call the byte order our computer uses the
	 host byte order, or just the
	 host order.
There is a convention of sending the multi-byte data
	 over IP
	 MSB first. This,
	 we will refer to as the network byte
	 order, or simply the network
	 order.
Now, if we compiled the above code for an Intel based
	 computer, our host byte order would
	 produce:
[image: Host byte order on an Intel system]
But the network byte order
 	 requires that we store the data MSB
 	 first:
[image: Network byte order]
Unfortunately, our host order is
	 the exact opposite of the network
	 order.
We have several ways of dealing with it. One would be
	 to reverse the values in our code:
	

	sa.sin_family = AF_INET;
	sa.sin_port = 13 << 8;
	sa.sin_addr.s_addr = (((((18 << 8) | 244) << 8) | 43) << 8) | 192;

This will trick our compiler
	 into storing the data in the network byte
	 order. In some cases, this is exactly the way
	 to do it (e.g., when programming in assembly
	 language). In most cases, however, it can cause a
	 problem.
Suppose, you wrote a sockets-based program in C. You
	 know it is going to run on a Pentium®, so you enter all
	 your constants in reverse and force them to the
	 network byte order. It works
	 well.
Then, some day, your trusted old Pentium® becomes a
	 rusty old Pentium®. You replace it with a system whose
	 host order is the same as the
	 network order. You need to recompile
	 all your software. All of your software continues to
	 perform well, except the one program you wrote.
You have since forgotten that you had forced all of
	 your constants to the opposite of the host
	 order. You spend some quality time tearing out
	 your hair, calling the names of all gods you ever heard
	 of (and some you made up), hitting your monitor with a
	 nerf bat, and performing all the other traditional
	 ceremonies of trying to figure out why something that has
	 worked so well is suddenly not working at all.
Eventually, you figure it out, say a couple of swear
	 words, and start rewriting your code.
Luckily, you are not the first one to face the
	 problem. Someone else has created the htons(3) and
	 htonl(3) C functions to convert a
	 short and long
	 respectively from the host byte
	 order to the network byte
	 order, and the ntohs(3) and ntohl(3)
	 C functions to go the other way.
On MSB-first
	 systems these functions do nothing. On
	 LSB-first systems
	 they convert values to the proper order.
So, regardless of what system your software is
	 compiled on, your data will end up in the correct order
	 if you use these functions.
7.5.1.2. Client Functions
Typically, the client initiates the connection to the
	 server. The client knows which server it is about to call:
	 It knows its IP address, and it knows the
	 port the server resides at. It is akin
	 to you picking up the phone and dialing the number (the
	 address), then, after someone answers,
	 asking for the person in charge of wingdings (the
	 port).
7.5.1.2.1. connect
Once a client has created a socket, it needs to
	 connect it to a specific port on a remote system. It uses
	 connect(2):

int connect(int s, const struct sockaddr *name, socklen_t namelen);

The s argument is the socket, i.e.,
	 the value returned by the socket
	 function. The name is a pointer to
	 sockaddr, the structure we have talked
	 about extensively. Finally, namelen
	 informs the system how many bytes are in our
	 sockaddr structure.
If connect is successful, it
	 returns 0. Otherwise it returns
	 -1 and stores the error code in
	 errno.
There are many reasons why
	 connect may fail. For example, with
	 an attempt to an Internet connection, the
	 IP address may not exist, or it may be
	 down, or just too busy, or it may not have a server
	 listening at the specified port. Or it may outright
	 refuse any request for specific
	 code.
7.5.1.2.2. Our First Client
We now know enough to write a very simple client, one
	 that will get current time from 192.43.244.18 and print it to
	 stdout.

/*
 * daytime.c
 *
 * Programmed by G. Adam Stanislav
 */
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

int main() {
 register int s;
 register int bytes;
 struct sockaddr_in sa;
 char buffer[BUFSIZ+1];

 if ((s = socket(PF_INET, SOCK_STREAM, 0)) < 0) {
 perror("socket");
 return 1;
 }

 bzero(&sa, sizeof sa);

 sa.sin_family = AF_INET;
 sa.sin_port = htons(13);
 sa.sin_addr.s_addr = htonl((((((192 << 8) | 43) << 8) | 244) << 8) | 18);
 if (connect(s, (struct sockaddr *)&sa, sizeof sa) < 0) {
 perror("connect");
 close(s);
 return 2;
 }

 while ((bytes = read(s, buffer, BUFSIZ)) > 0)
 write(1, buffer, bytes);

 close(s);
 return 0;
}

Go ahead, enter it in your editor, save it as
	 daytime.c, then compile and run
	 it:
% cc -O3 -o daytime daytime.c
% ./daytime

52079 01-06-19 02:29:25 50 0 1 543.9 UTC(NIST) *
%
In this case, the date was June 19, 2001, the time was
	 02:29:25 UTC. Naturally, your results
	 will vary.
7.5.1.3. Server Functions
The typical server does not initiate the
	 connection. Instead, it waits for a client to call it and
	 request services. It does not know when the client will
	 call, nor how many clients will call. It may be just sitting
	 there, waiting patiently, one moment, The next moment, it
	 can find itself swamped with requests from a number of
	 clients, all calling in at the same time.
The sockets interface offers three basic functions to
	 handle this.
7.5.1.3.1. bind
Ports are like extensions to a phone line: After you
	 dial a number, you dial the extension to get to a specific
	 person or department.
There are 65535 IP ports, but a
	 server usually processes requests that come in on only one
	 of them. It is like telling the phone room operator that
	 we are now at work and available to answer the phone at a
	 specific extension. We use bind(2) to tell sockets
	 which port we want to serve.

int bind(int s, const struct sockaddr *addr, socklen_t addrlen);

Beside specifying the port in addr,
	 the server may include its IP
	 address. However, it can just use the symbolic constant
	 INADDR_ANY to indicate it will serve all
	 requests to the specified port regardless of what its
	 IP address is. This symbol, along with
	 several similar ones, is declared in
	 netinet/in.h

#define	INADDR_ANY		(u_int32_t)0x00000000

Suppose we were writing a server for the
	 daytime protocol over
	 TCP/IP. Recall that
	 it uses port 13. Our sockaddr_in
	 structure would look like this:
[image: Example Server sockaddr_in]
7.5.1.3.2. listen
To continue our office phone analogy, after you have
	 told the phone central operator what extension you will be
	 at, you now walk into your office, and make sure your own
	 phone is plugged in and the ringer is turned on. Plus, you
	 make sure your call waiting is activated, so you can hear
	 the phone ring even while you are talking to someone.
The server ensures all of that with the listen(2)
 function.

int listen(int s, int backlog);

In here, the backlog variable tells
	 sockets how many incoming requests to accept while you are
	 busy processing the last request. In other words, it
	 determines the maximum size of the queue of pending
	 connections.
7.5.1.3.3. accept
After you hear the phone ringing, you accept the call
	 by answering the call. You have now established a
	 connection with your client. This connection remains
	 active until either you or your client hang up.
The server accepts the connection by using the
 	 accept(2) function.

int accept(int s, struct sockaddr *addr, socklen_t *addrlen);

Note that this time addrlen is a
 pointer. This is necessary because in this case it is the
 socket that fills out addr, the
 sockaddr_in structure.
The return value is an integer. Indeed, the
	 accept returns a new
	 socket. You will use this new socket to
	 communicate with the client.
What happens to the old socket? It continues to listen
	 for more requests (remember the backlog
	 variable we passed to listen?) until
	 we close it.
Now, the new socket is meant only for
	 communications. It is fully connected. We cannot pass it
	 to listen again, trying to accept
	 additional connections.
7.5.1.3.4. Our First Server
Our first server will be somewhat more complex than
	 our first client was: Not only do we have more sockets
	 functions to use, but we need to write it as a
	 daemon.
This is best achieved by creating a child
	 process after binding the port. The main
	 process then exits and returns control to the
	 shell (or whatever program
	 invoked it).
The child calls listen, then
	 starts an endless loop, which accepts a connection, serves
	 it, and eventually closes its socket.

/*
 * daytimed - a port 13 server
 *
 * Programmed by G. Adam Stanislav
 * June 19, 2001
 */
#include <stdio.h>
#include <time.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define BACKLOG 4

int main() {
 register int s, c;
 int b;
 struct sockaddr_in sa;
 time_t t;
 struct tm *tm;
 FILE *client;

 if ((s = socket(PF_INET, SOCK_STREAM, 0)) < 0) {
 perror("socket");
 return 1;
 }

 bzero(&sa, sizeof sa);

 sa.sin_family = AF_INET;
 sa.sin_port = htons(13);

 if (INADDR_ANY)
 sa.sin_addr.s_addr = htonl(INADDR_ANY);

 if (bind(s, (struct sockaddr *)&sa, sizeof sa) < 0) {
 perror("bind");
 return 2;
 }

 switch (fork()) {
 case -1:
 perror("fork");
 return 3;
 break;
 default:
 close(s);
 return 0;
 break;
 case 0:
 break;
 }

 listen(s, BACKLOG);

 for (;;) {
 b = sizeof sa;

 if ((c = accept(s, (struct sockaddr *)&sa, &b)) < 0) {
 perror("daytimed accept");
 return 4;
 }

 if ((client = fdopen(c, "w")) == NULL) {
 perror("daytimed fdopen");
 return 5;
 }

 if ((t = time(NULL)) < 0) {
 perror("daytimed time");

 return 6;
 }

 tm = gmtime(&t);
 fprintf(client, "%.4i-%.2i-%.2iT%.2i:%.2i:%.2iZ\n",
 tm->tm_year + 1900,
 tm->tm_mon + 1,
 tm->tm_mday,
 tm->tm_hour,
 tm->tm_min,
 tm->tm_sec);

 fclose(client);
 }
}

We start by creating a socket. Then we fill out the
	 sockaddr_in structure in
	 sa. Note the conditional use of
	 INADDR_ANY:

 if (INADDR_ANY)
 sa.sin_addr.s_addr = htonl(INADDR_ANY);

Its value is 0. Since we have
	 just used bzero on the entire
	 structure, it would be redundant to set it to
	 0 again. But if we port our code to
	 some other system where INADDR_ANY is
	 perhaps not a zero, we need to assign it to
	 sa.sin_addr.s_addr. Most modern C
	 compilers are clever enough to notice that
	 INADDR_ANY is a constant. As long as it
	 is a zero, they will optimize the entire conditional
	 statement out of the code.
After we have called bind
	 successfully, we are ready to become a
	 daemon: We use
	 fork to create a child process. In
	 both, the parent and the child, the s
	 variable is our socket. The parent process will not need
	 it, so it calls close, then it
	 returns 0 to inform its own parent it
	 had terminated successfully.
Meanwhile, the child process continues working in the
	 background. It calls listen and sets
	 its backlog to 4. It does not need a
	 large value here because daytime is
	 not a protocol many clients request all the time, and
	 because it can process each request instantly anyway.
Finally, the daemon starts an endless loop, which
	 performs the following steps:
	 Call accept. It waits
	 here until a client contacts it. At that point, it
	 receives a new socket, c, which it
	 can use to communicate with this particular client.
	

	It uses the C function
	 fdopen to turn the socket from a
	 low-level file descriptor to a
	 C-style FILE pointer. This will allow
	 the use of fprintf later on.
	

	It checks the time, and prints it in the
	 ISO 8601 format
	 to the client “file”. It
	 then uses fclose to close the
	 file. That will automatically close the socket as well.
	

We can generalize this, and use
	 it as a model for many other servers:
[image: Sequential Server]
This flowchart is good for sequential
	 servers, i.e., servers that can serve one
	 client at a time, just as we were able to with our
	 daytime server. This is only possible
	 whenever there is no real “conversation”
	 going on between the client and the server: As soon as the
	 server detects a connection to the client, it sends out
	 some data and closes the connection. The entire operation
	 may take nanoseconds, and it is finished.
The advantage of this flowchart is that, except for
	 the brief moment after the parent
	 forks and before it exits, there is
	 always only one process active: Our
	 server does not take up much memory and other system
	 resources.
Note that we have added initialize
	 daemon in our flowchart. We did not need to
	 initialize our own daemon, but this is a good place in the
	 flow of the program to set up any
	 signal handlers, open any files we
	 may need, etc.
Just about everything in the flow chart can be used
	 literally on many different servers. The
	 serve entry is the exception. We
	 think of it as a “black
	 box”, i.e., something you design
	 specifically for your own server, and just “plug it
	 into the rest.”
Not all protocols are that simple. Many receive a
	 request from the client, reply to it, then receive another
	 request from the same client. Because of that, they do not
	 know in advance how long they will be serving the
	 client. Such servers usually start a new process for each
	 client. While the new process is serving its client, the
	 daemon can continue listening for more connections.
Now, go ahead, save the above source code as
	 daytimed.c (it is customary to end
	 the names of daemons with the letter
	 d). After you have compiled it, try
	 running it:
% ./daytimed
bind: Permission denied
%
What happened here? As you will recall, the
	 daytime protocol uses port 13. But
	 all ports below 1024 are reserved to the superuser
	 (otherwise, anyone could start a daemon pretending to
	 serve a commonly used port, while causing a security
	 breach).
Try again, this time as the superuser:
./daytimed
#
What... Nothing? Let us try again:
./daytimed

bind: Address already in use
#
Every port can only be bound by one program at a
	 time. Our first attempt was indeed successful: It started
	 the child daemon and returned quietly. It is still running
	 and will continue to run until you either kill it, or any
	 of its system calls fail, or you reboot the system.
Fine, we know it is running in the background. But is
	 it working? How do we know it is a proper
	 daytime server? Simple:
% telnet localhost 13

Trying ::1...
telnet: connect to address ::1: Connection refused
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
2001-06-19T21:04:42Z
Connection closed by foreign host.
%
telnet tried the new
	 IPv6, and failed. It retried with
	 IPv4 and succeeded. The daemon
	 works.
If you have access to another UNIX® system via
	 telnet, you can use it to test
	 accessing the server remotely. My computer does not have a
	 static IP address, so this is what I
	 did:
% who

whizkid ttyp0 Jun 19 16:59 (216.127.220.143)
xxx ttyp1 Jun 19 16:06 (xx.xx.xx.xx)
% telnet 216.127.220.143 13

Trying 216.127.220.143...
Connected to r47.bfm.org.
Escape character is '^]'.
2001-06-19T21:31:11Z
Connection closed by foreign host.
%
Again, it worked. Will it work using the domain name?
	
% telnet r47.bfm.org 13

Trying 216.127.220.143...
Connected to r47.bfm.org.
Escape character is '^]'.
2001-06-19T21:31:40Z
Connection closed by foreign host.
%
By the way, telnet prints
	 the Connection closed by foreign host
	 message after our daemon has closed the socket. This shows
	 us that, indeed, using
	 fclose(client); in our code works as
	 advertised.
7.6. Helper Functions
FreeBSD C library contains many helper functions for sockets
 programming. For example, in our sample client we hard coded
 the time.nist.gov
 IP address. But we do not always know the
 IP address. Even if we do, our software is
 more flexible if it allows the user to enter the
 IP address, or even the domain name.

7.6.1. gethostbyname
While there is no way to pass the domain name directly to
 any of the sockets functions, the FreeBSD C library comes with
 the gethostbyname(3) and gethostbyname2(3) functions,
 declared in netdb.h.

struct hostent * gethostbyname(const char *name);
struct hostent * gethostbyname2(const char *name, int af);

Both return a pointer to the hostent
 structure, with much information about the domain. For our
 purposes, the h_addr_list[0] field of the
 structure points at h_length bytes of the
 correct address, already stored in the network byte
 order.
This allows us to create a much more flexible——and
 much more useful——version of our
 daytime program:

/*
 * daytime.c
 *
 * Programmed by G. Adam Stanislav
 * 19 June 2001
 */
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

int main(int argc, char *argv[]) {
 register int s;
 register int bytes;
 struct sockaddr_in sa;
 struct hostent *he;
 char buf[BUFSIZ+1];
 char *host;

 if ((s = socket(PF_INET, SOCK_STREAM, 0)) < 0) {
 perror("socket");
 return 1;
 }

 bzero(&sa, sizeof sa);

 sa.sin_family = AF_INET;
 sa.sin_port = htons(13);

 host = (argc > 1) ? (char *)argv[1] : "time.nist.gov";

 if ((he = gethostbyname(host)) == NULL) {
 perror(host);
 return 2;
 }

 bcopy(he->h_addr_list[0],&sa.sin_addr, he->h_length);

 if (connect(s, (struct sockaddr *)&sa, sizeof sa) < 0) {
 perror("connect");
 return 3;
 }

 while ((bytes = read(s, buf, BUFSIZ)) > 0)
 write(1, buf, bytes);

 close(s);
 return 0;
}

We now can type a domain name (or an IP
 address, it works both ways) on the command line, and the
 program will try to connect to its
 daytime server. Otherwise, it will still
 default to time.nist.gov. However, even in
 this case we will use gethostbyname
 rather than hard coding 192.43.244.18. That way, even if its
 IP address changes in the future, we will
 still find it.
Since it takes virtually no time to get the time from your
 local server, you could run daytime
 twice in a row: First to get the time from time.nist.gov, the second time from
 your own system. You can then compare the results and see how
 exact your system clock is:
% daytime ; daytime localhost

52080 01-06-20 04:02:33 50 0 0 390.2 UTC(NIST) *
2001-06-20T04:02:35Z
%
As you can see, my system was two seconds ahead of the
 NIST time.
7.6.2. getservbyname
Sometimes you may not be sure what port a certain service
 uses. The getservbyname(3) function, also declared in
 netdb.h comes in very handy in those
 cases:

struct servent * getservbyname(const char *name, const char *proto);

The servent structure contains the
 s_port, which contains the proper port,
 already in network byte order.
Had we not known the correct port for the
 daytime service, we could have found it
 this way:

 struct servent *se;
 ...
 if ((se = getservbyname("daytime", "tcp")) == NULL {
 fprintf(stderr, "Cannot determine which port to use.\n");
 return 7;
 }
 sa.sin_port = se->s_port;

You usually do know the port. But if you are developing a
 new protocol, you may be testing it on an unofficial
 port. Some day, you will register the protocol and its port
 (if nowhere else, at least in your
 /etc/services, which is where
 getservbyname looks). Instead of
 returning an error in the above code, you just use the
 temporary port number. Once you have listed the protocol in
 /etc/services, your software will find
 its port without you having to rewrite the code.
7.7. Concurrent Servers
Unlike a sequential server, a concurrent
 server has to be able to serve more than one client
 at a time. For example, a chat server may
 be serving a specific client for hours——it cannot wait till
 it stops serving a client before it serves the next one.
This requires a significant change in our flowchart:
[image: Concurrent Server]
We moved the serve from the
 daemon process to its own server
 process. However, because each child process inherits
 all open files (and a socket is treated just like a file), the
 new process inherits not only the “accepted
 handle,” i.e., the socket returned by the
 accept call, but also the top
 socket, i.e., the one opened by the top process right
 at the beginning.
However, the server process does not
 need this socket and should close it
 immediately. Similarly, the daemon process
 no longer needs the accepted socket, and
 not only should, but must
 close it——otherwise, it will run out
 of available file descriptors sooner or
 later.
After the server process is done
 serving, it should close the accepted
 socket. Instead of returning to
 accept, it now exits.

Under UNIX®, a process does not really
 exit. Instead, it
 returns to its parent. Typically, a parent
 process waits for its child process, and
 obtains a return value. However, our daemon
 process cannot simply stop and wait. That would
 defeat the whole purpose of creating additional processes. But
 if it never does wait, its children will
 become zombies——no longer functional
 but still roaming around.
For that reason, the daemon process
 needs to set signal handlers in its
 initialize daemon phase. At least a
 SIGCHLD signal has to be processed, so the
 daemon can remove the zombie return values from the system and
 release the system resources they are taking up.
That is why our flowchart now contains a process
 signals box, which is not connected to any other box.
 By the way, many servers also process SIGHUP,
 and typically interpret as the signal from the superuser that
 they should reread their configuration files. This allows us to
 change settings without having to kill and restart these
 servers.
章 8. IPv6 Internals
8.1. IPv6/IPsec Implementation
Contributed by Yoshinobu Inoue. This section should explain IPv6 and IPsec related implementation
 internals. These functionalities are derived from KAME project
8.1.1. IPv6
8.1.1.1. Conformance
The IPv6 related functions conforms, or tries to conform to
	the latest set of IPv6 specifications. For future reference we list
	some of the relevant documents below (NOTE: this
	is not a complete list - this is too hard to maintain...).
For details please refer to specific chapter in the document,
	RFCs, manual pages, or comments in the source code.
Conformance tests have been performed on the KAME STABLE kit
 at TAHI project. Results can be viewed at
	http://www.tahi.org/report/KAME/.
	We also attended Univ. of New Hampshire IOL tests
	(http://www.iol.unh.edu/) in the
	past, with our past snapshots.
	RFC1639: FTP Operation Over Big Address Records
	 (FOOBAR)
	RFC2428 is preferred over RFC1639. FTP clients will
		first try RFC2428, then RFC1639 if failed.

	RFC1886: DNS Extensions to support IPv6

	RFC1933: Transition Mechanisms for IPv6 Hosts and
	 Routers
	IPv4 compatible address is not supported.

	automatic tunneling (described in 4.3 of this RFC) is not
		supported.

	gif(4) interface implements IPv[46]-over-IPv[46]
		tunnel in a generic way, and it covers "configured tunnel"
		described in the spec. See 23.5.1.5
		in this document for details.

	RFC1981: Path MTU Discovery for IPv6

	RFC2080: RIPng for IPv6
	usr.sbin/route6d support this.

	RFC2292: Advanced Sockets API for IPv6
	For supported library functions/kernel APIs, see
		sys/netinet6/ADVAPI.

	RFC2362: Protocol Independent Multicast-Sparse
	 Mode (PIM-SM)
	RFC2362 defines packet formats for PIM-SM.
		draft-ietf-pim-ipv6-01.txt is
		written based on this.

	RFC2373: IPv6 Addressing Architecture
	supports node required addresses, and conforms to
		the scope requirement.

	RFC2374: An IPv6 Aggregatable Global Unicast Address
	 Format
	supports 64-bit length of Interface ID.

	RFC2375: IPv6 Multicast Address Assignments
	Userland applications use the well-known addresses
		assigned in the RFC.

	RFC2428: FTP Extensions for IPv6 and NATs
	RFC2428 is preferred over RFC1639. FTP clients will
		first try RFC2428, then RFC1639 if failed.

	RFC2460: IPv6 specification

	RFC2461: Neighbor discovery for IPv6
	See 23.5.1.2
		in this document for details.

	RFC2462: IPv6 Stateless Address Autoconfiguration
	See 23.5.1.4 in this
		document for details.

	RFC2463: ICMPv6 for IPv6 specification
	See 23.5.1.9 in this
		document for details.

	RFC2464: Transmission of IPv6 Packets over Ethernet
	 Networks

	RFC2465: MIB for IPv6: Textual Conventions and General
	 Group
	Necessary statistics are gathered by the kernel. Actual
		IPv6 MIB support is provided as a patchkit for ucd-snmp.

	RFC2466: MIB for IPv6: ICMPv6 group
	Necessary statistics are gathered by the kernel. Actual
		IPv6 MIB support is provided as patchkit for ucd-snmp.

	RFC2467: Transmission of IPv6 Packets over FDDI
	 Networks

	RFC2497: Transmission of IPv6 packet over ARCnet
	 Networks

	RFC2553: Basic Socket Interface Extensions for IPv6
	IPv4 mapped address (3.7) and special behavior of IPv6
		wildcard bind socket (3.8) are supported. See 23.5.1.12
		in this document for details.

	RFC2675: IPv6 Jumbograms
	See 23.5.1.7 in
		this document for details.

	RFC2710: Multicast Listener Discovery for IPv6

	RFC2711: IPv6 router alert option

	draft-ietf-ipngwg-router-renum-08: Router
	 renumbering for IPv6

	draft-ietf-ipngwg-icmp-namelookups-02:
	 IPv6 Name Lookups Through ICMP

	draft-ietf-ipngwg-icmp-name-lookups-03:
	 IPv6 Name Lookups Through ICMP

	draft-ietf-pim-ipv6-01.txt:
	 PIM for IPv6
	pim6dd(8) implements dense mode. pim6sd(8)
		implements sparse mode.

	draft-itojun-ipv6-tcp-to-anycast-00:
	 Disconnecting TCP connection toward IPv6 anycast address

	draft-yamamoto-wideipv6-comm-model-00
	
	See 23.5.1.6 in this
		document for details.

	draft-ietf-ipngwg-scopedaddr-format-00.txt
	 : An Extension of Format for IPv6 Scoped
	 Addresses

8.1.1.2. Neighbor Discovery
Neighbor Discovery is fairly stable. Currently Address
	Resolution, Duplicated Address Detection, and Neighbor Unreachability
	Detection are supported. In the near future we will be adding Proxy
	Neighbor Advertisement support in the kernel and Unsolicited Neighbor
	Advertisement transmission command as admin tool.
If DAD fails, the address will be marked "duplicated" and
	message will be generated to syslog (and usually to console). The
	"duplicated" mark can be checked with ifconfig(8). It is
	administrators' responsibility to check for and recover from DAD
	failures. The behavior should be improved in the near future.
Some of the network driver loops multicast packets back to itself,
 even if instructed not to do so (especially in promiscuous mode).
 In such cases DAD may fail, because DAD engine sees inbound NS packet
 (actually from the node itself) and considers it as a sign of duplicate.
 You may want to look at #if condition marked "heuristics" in
 sys/netinet6/nd6_nbr.c:nd6_dad_timer() as workaround (note that the code
 fragment in "heuristics" section is not spec conformant).
Neighbor Discovery specification (RFC2461) does not talk about
	neighbor cache handling in the following cases:
	when there was no neighbor cache entry, node
	 received unsolicited RS/NS/NA/redirect packet without
	 link-layer address

	neighbor cache handling on medium without link-layer
	 address (we need a neighbor cache entry for IsRouter bit)

For first case, we implemented workaround based on discussions
	on IETF ipngwg mailing list. For more details, see the comments in
	the source code and email thread started from (IPng 7155), dated
	Feb 6 1999.
IPv6 on-link determination rule (RFC2461) is quite different
	from assumptions in BSD network code. At this moment, no on-link
	determination rule is supported where default router list is empty
	(RFC2461, section 5.2, last sentence in 2nd paragraph - note that
	the spec misuse the word "host" and "node" in several places in
	the section).
To avoid possible DoS attacks and infinite loops, only 10
	options on ND packet is accepted now. Therefore, if you have 20
	prefix options attached to RA, only the first 10 prefixes will be
	recognized. If this troubles you, please ask it on FREEBSD-CURRENT
	mailing list and/or modify nd6_maxndopt in
	sys/netinet6/nd6.c. If there are high demands
	we may provide sysctl knob for the variable.
8.1.1.3. Scope Index
IPv6 uses scoped addresses. Therefore, it is very important to
	specify scope index (interface index for link-local address, or
	site index for site-local address) with an IPv6 address. Without
	scope index, scoped IPv6 address is ambiguous to the kernel, and
	kernel will not be able to determine the outbound interface for a
	packet.
Ordinary userland applications should use advanced API
	(RFC2292) to specify scope index, or interface index. For similar
	purpose, sin6_scope_id member in sockaddr_in6 structure is defined
	in RFC2553. However, the semantics for sin6_scope_id is rather vague.
	If you care about portability of your application, we suggest you to
	use advanced API rather than sin6_scope_id.
In the kernel, an interface index for link-local scoped address is
	embedded into 2nd 16bit-word (3rd and 4th byte) in IPv6 address. For
	example, you may see something like:
	
	fe80:1::200:f8ff:fe01:6317
	
in the routing table and interface address structure (struct
	in6_ifaddr). The address above is a link-local unicast address
	which belongs to a network interface whose interface identifier is 1.
	The embedded index enables us to identify IPv6 link local
	addresses over multiple interfaces effectively and with only a
	little code change.
Routing daemons and configuration programs, like route6d(8)
	and ifconfig(8), will need to manipulate the "embedded" scope
	index. These programs use routing sockets and ioctls (like
	SIOCGIFADDR_IN6) and the kernel API will return IPv6 addresses with
	2nd 16bit-word filled in. The APIs are for manipulating kernel
	internal structure. Programs that use these APIs have to be prepared
	about differences in kernels anyway.
When you specify scoped address to the command line, NEVER write
	the embedded form (such as ff02:1::1 or fe80:2::fedc). This is not
	supposed to work. Always use standard form, like ff02::1 or
	fe80::fedc, with command line option for specifying interface (like
	ping6 -I ne0 ff02::1). In general, if a command
	does not have command line option to specify outgoing interface, that
	command is not ready to accept scoped address. This may seem to be
	opposite from IPv6's premise to support "dentist office" situation.
	We believe that specifications need some improvements for this.
Some of the userland tools support extended numeric IPv6 syntax,
	as documented in
	draft-ietf-ipngwg-scopedaddr-format-00.txt. You
	can specify outgoing link, by using name of the outgoing interface
	like "fe80::1%ne0". This way you will be able to specify link-local
	scoped address without much trouble.
To use this extension in your program, you will need to use
	getaddrinfo(3), and getnameinfo(3) with NI_WITHSCOPEID.
	The implementation currently assumes 1-to-1 relationship between a
	link and an interface, which is stronger than what specs say.
8.1.1.4. Plug and Play
Most of the IPv6 stateless address autoconfiguration is implemented
	in the kernel. Neighbor Discovery functions are implemented in the
	kernel as a whole. Router Advertisement (RA) input for hosts is
	implemented in the kernel. Router Solicitation (RS) output for
	endhosts, RS input for routers, and RA output for routers are
	implemented in the userland.
8.1.1.4.1. Assignment of link-local, and special addresses
IPv6 link-local address is generated from IEEE802 address
	 (Ethernet MAC address). Each of interface is assigned an IPv6
	 link-local address automatically, when the interface becomes up
	 (IFF_UP). Also, direct route for the link-local address is added
	 to routing table.
Here is an output of netstat command:
Internet6:
Destination Gateway Flags Netif Expire
fe80:1::%ed0/64 link#1 UC ed0
fe80:2::%ep0/64 link#2 UC ep0
Interfaces that has no IEEE802 address (pseudo interfaces
	 like tunnel interfaces, or ppp interfaces) will borrow IEEE802
	 address from other interfaces, such as Ethernet interfaces,
	 whenever possible. If there is no IEEE802 hardware attached,
	 a last resort pseudo-random value, MD5(hostname), will
	 be used as source of link-local address. If it is not suitable
	 for your usage, you will need to configure the link-local address
	 manually.
If an interface is not capable of handling IPv6 (such as
	 lack of multicast support), link-local address will not be
	 assigned to that interface. See section 2 for details.
Each interface joins the solicited multicast address and the
	 link-local all-nodes multicast addresses (e.g. fe80::1:ff01:6317
	 and ff02::1, respectively, on the link the interface is attached).
	 In addition to a link-local address, the loopback address (::1)
	 will be assigned to the loopback interface. Also, ::1/128 and
	 ff01::/32 are automatically added to routing table, and loopback
	 interface joins node-local multicast group ff01::1.
8.1.1.4.2. Stateless address autoconfiguration on hosts
In IPv6 specification, nodes are separated into two categories:
	 routers and hosts. Routers
	 forward packets addressed to others, hosts does not forward the
	 packets. net.inet6.ip6.forwarding defines whether this node is
	 router or host (router if it is 1, host if it is 0).
When a host hears Router Advertisement from the router, a host
	 may autoconfigure itself by stateless address autoconfiguration.
	 This behavior can be controlled by net.inet6.ip6.accept_rtadv (host
	 autoconfigures itself if it is set to 1). By autoconfiguration,
	 network address prefix for the receiving interface (usually global
	 address prefix) is added. Default route is also configured.
	 Routers periodically generate Router Advertisement packets. To
	 request an adjacent router to generate RA packet, a host can
	 transmit Router Solicitation. To generate a RS packet at any time,
	 use the rtsol command. rtsold(8) daemon is
	 also available. rtsold(8) generates Router Solicitation whenever
	 necessary, and it works great for nomadic usage (notebooks/laptops).
	 If one wishes to ignore Router Advertisements, use sysctl to set
	 net.inet6.ip6.accept_rtadv to 0.
To generate Router Advertisement from a router, use the
	 rtadvd(8) daemon.
Note that, IPv6 specification assumes the following items, and
	 nonconforming cases are left unspecified:
	Only hosts will listen to router advertisements

	Hosts have single network interface (except loopback)

Therefore, this is unwise to enable net.inet6.ip6.accept_rtadv
	 on routers, or multi-interface host. A misconfigured node can
	 behave strange (nonconforming configuration allowed for those who
	 would like to do some experiments).
To summarize the sysctl knob:
	accept_rtadv	forwarding	role of the node
	---		---		---
	0		0		host (to be manually configured)
	0		1		router
	1		0		autoconfigured host
					(spec assumes that host has single
					interface only, autoconfigured host
					with multiple interface is
					out-of-scope)
	1		1		invalid, or experimental
					(out-of-scope of spec)
RFC2462 has validation rule against incoming RA prefix
	 information option, in 5.5.3 (e). This is to protect hosts from
	 malicious (or misconfigured) routers that advertise very short
	 prefix lifetime. There was an update from Jim Bound to ipngwg
	 mailing list (look for "(ipng 6712)" in the archive) and it is
	 implemented Jim's update.
See 23.5.1.2 in
	 the document for relationship between DAD and
	 autoconfiguration.
8.1.1.5. Generic tunnel interface
GIF (Generic InterFace) is a pseudo interface for configured
	tunnel. Details are described in gif(4). Currently
	v6 in v6

	v6 in v4

	v4 in v6

	v4 in v4

are available. Use gifconfig(8) to assign physical (outer)
	source and destination address to gif interfaces. Configuration that
	uses same address family for inner and outer IP header (v4 in v4, or
	v6 in v6) is dangerous. It is very easy to configure interfaces and
	routing tables to perform infinite level of tunneling.
	Please be warned.
gif can be configured to be ECN-friendly. See 23.5.4.5 for ECN-friendliness of
	tunnels, and gif(4) for how to configure.
If you would like to configure an IPv4-in-IPv6 tunnel with gif
	interface, read gif(4) carefully. You will need to
	remove IPv6 link-local address automatically assigned to the gif
	interface.
8.1.1.6. Source Address Selection
Current source selection rule is scope oriented (there are some
	exceptions - see below). For a given destination, a source IPv6
	address is selected by the following rule:
	If the source address is explicitly specified by
	 the user (e.g. via the advanced API), the specified address
	 is used.

	If there is an address assigned to the outgoing
	 interface (which is usually determined by looking up the
	 routing table) that has the same scope as the destination
	 address, the address is used.
This is the most typical case.

	If there is no address that satisfies the above
	 condition, choose a global address assigned to one of
	 the interfaces on the sending node.

	If there is no address that satisfies the above condition,
	 and destination address is site local scope, choose a site local
	 address assigned to one of the interfaces on the sending node.
	

	If there is no address that satisfies the above condition,
	 choose the address associated with the routing table entry for the
	 destination. This is the last resort, which may cause scope
	 violation.

For instance, ::1 is selected for ff01::1,
	fe80:1::200:f8ff:fe01:6317 for fe80:1::2a0:24ff:feab:839b (note
	that embedded interface index - described in 23.5.1.3 - helps us
	choose the right source address. Those embedded indices will not
	be on the wire). If the outgoing interface has multiple address for
	the scope, a source is selected longest match basis (rule 3). Suppose
	3ffe:501:808:1:200:f8ff:fe01:6317 and 3ffe:2001:9:124:200:f8ff:fe01:6317
	are given to the outgoing interface. 3ffe:501:808:1:200:f8ff:fe01:6317
	is chosen as the source for the destination 3ffe:501:800::1.
Note that the above rule is not documented in the IPv6 spec.
	It is considered "up to implementation" item. There are some cases
	where we do not use the above rule. One example is connected TCP
	session, and we use the address kept in tcb as the source. Another
	example is source address for Neighbor Advertisement. Under the spec
	(RFC2461 7.2.2) NA's source should be the target address of the
	corresponding NS's target. In this case we follow the spec rather
	than the above longest-match rule.
For new connections (when rule 1 does not apply), deprecated
	addresses (addresses with preferred lifetime = 0) will not be chosen
	as source address if other choices are available. If no other choices
	are available, deprecated address will be used as a last resort. If
	there are multiple choice of deprecated addresses, the above scope
	rule will be used to choose from those deprecated addresses. If you
	would like to prohibit the use of deprecated address for some reason,
	configure net.inet6.ip6.use_deprecated to 0. The issue related to
	deprecated address is described in RFC2462 5.5.4 (NOTE: there is
	some debate underway in IETF ipngwg on how to use "deprecated"
	address).
8.1.1.7. Jumbo Payload
The Jumbo Payload hop-by-hop option is implemented and can
	be used to send IPv6 packets with payloads longer than 65,535 octets.
	But currently no physical interface whose MTU is more than 65,535 is
	supported, so such payloads can be seen only on the loopback
	interface (i.e. lo0).
If you want to try jumbo payloads, you first have to reconfigure
	the kernel so that the MTU of the loopback interface is more than
	65,535 bytes; add the following to the kernel configuration file:

	 options		"LARGE_LOMTU"		#To test jumbo payload
	
and recompile the new kernel.
Then you can test jumbo payloads by the ping6(8) command
	with -b and -s options. The -b option must be specified to enlarge
	the size of the socket buffer and the -s option specifies the length
	of the packet, which should be more than 65,535. For example,
	type as follows:
% ping6 -b 70000 -s 68000 ::1
The IPv6 specification requires that the Jumbo Payload option
	must not be used in a packet that carries a fragment header. If
	this condition is broken, an ICMPv6 Parameter Problem message must
	be sent to the sender. specification is followed, but you cannot
	usually see an ICMPv6 error caused by this requirement.
When an IPv6 packet is received, the frame length is checked and
	compared to the length specified in the payload length field of the
	IPv6 header or in the value of the Jumbo Payload option, if any. If
	the former is shorter than the latter, the packet is discarded and
	statistics are incremented. You can see the statistics as output of
	netstat(8) command with `-s -p ip6' option:
% netstat -s -p ip6
	 ip6:
		(snip)
		1 with data size < data length
So, kernel does not send an ICMPv6 error unless the erroneous
	packet is an actual Jumbo Payload, that is, its packet size is more
	than 65,535 bytes. As described above, currently no physical interface
	with such a huge MTU is supported, so it rarely returns an
	ICMPv6 error.
TCP/UDP over jumbogram is not supported at this moment. This
	is because we have no medium (other than loopback) to test this.
	Contact us if you need this.
IPsec does not work on jumbograms. This is due to some
	specification twists in supporting AH with jumbograms (AH header
	size influences payload length, and this makes it real hard to
	authenticate inbound packet with jumbo payload option as well as AH).
	
There are fundamental issues in *BSD support for jumbograms.
	We would like to address those, but we need more time to finalize
	these. To name a few:
	mbuf pkthdr.len field is typed as "int" in 4.4BSD, so
	 it will not hold jumbogram with len > 2G on 32bit architecture
	 CPUs. If we would like to support jumbogram properly, the field
	 must be expanded to hold 4G + IPv6 header + link-layer header.
	 Therefore, it must be expanded to at least int64_t
	 (u_int32_t is NOT enough).

	We mistakingly use "int" to hold packet length in many
	 places. We need to convert them into larger integral type.
	 It needs a great care, as we may experience overflow during
	 packet length computation.

	We mistakingly check for ip6_plen field of IPv6 header
	 for packet payload length in various places. We should be
	 checking mbuf pkthdr.len instead. ip6_input() will perform
	 sanity check on jumbo payload option on input, and we can
	 safely use mbuf pkthdr.len afterwards.

	TCP code needs a careful update in bunch of places, of
	 course.

8.1.1.8. Loop prevention in header processing
IPv6 specification allows arbitrary number of extension headers
	to be placed onto packets. If we implement IPv6 packet processing
	code in the way BSD IPv4 code is implemented, kernel stack may
	overflow due to long function call chain. sys/netinet6 code
	is carefully designed to avoid kernel stack overflow. Because of
	this, sys/netinet6 code defines its own protocol switch
	structure, as "struct ip6protosw" (see
	netinet6/ip6protosw.h). There is no such
	update to IPv4 part (sys/netinet) for compatibility, but small
	change is added to its pr_input() prototype. So "struct ipprotosw"
	is also defined. Because of this, if you receive IPsec-over-IPv4
	packet with massive number of IPsec headers, kernel stack may blow
	up. IPsec-over-IPv6 is okay. (Off-course, for those all IPsec
	headers to be processed, each such IPsec header must pass each
	IPsec check. So an anonymous attacker will not be able to do such an
	attack.)
8.1.1.9. ICMPv6
After RFC2463 was published, IETF ipngwg has decided to
	disallow ICMPv6 error packet against ICMPv6 redirect, to prevent
	ICMPv6 storm on a network medium. This is already implemented
	into the kernel.
8.1.1.10. Applications
For userland programming, we support IPv6 socket API as
	specified in RFC2553, RFC2292 and upcoming Internet drafts.
TCP/UDP over IPv6 is available and quite stable. You can
	enjoy telnet(1), ftp(1), rlogin(1), rsh(1),
	ssh(1), etc. These applications are protocol independent.
	That is, they automatically chooses IPv4 or IPv6 according to DNS.
	
8.1.1.11. Kernel Internals
While ip_forward() calls ip_output(), ip6_forward() directly
	calls if_output() since routers must not divide IPv6 packets into
	fragments.
ICMPv6 should contain the original packet as long as possible
	up to 1280. UDP6/IP6 port unreach, for instance, should contain
	all extension headers and the *unchanged* UDP6 and IP6 headers.
	So, all IP6 functions except TCP never convert network byte
	order into host byte order, to save the original packet.
tcp_input(), udp6_input() and icmp6_input() can not assume that
	IP6 header is preceding the transport headers due to extension
	headers. So, in6_cksum() was implemented to handle packets whose IP6
	header and transport header is not continuous. TCP/IP6 nor UDP6/IP6
	header structures do not exist for checksum calculation.
To process IP6 header, extension headers and transport headers
	easily, network drivers are now required to store packets in one
	internal mbuf or one or more external mbufs. A typical old driver
	prepares two internal mbufs for 96 - 204 bytes data, however, now
	such packet data is stored in one external mbuf.
netstat -s -p ip6 tells you whether or not
	your driver conforms such requirement. In the following example,
	"cce0" violates the requirement. (For more information, refer to
	Section 2.)
Mbuf statistics:
 317 one mbuf
 two or more mbuf::
 lo0 = 8
			cce0 = 10
 3282 one ext mbuf
 0 two or more ext mbuf
	
Each input function calls IP6_EXTHDR_CHECK in the beginning to
	check if the region between IP6 and its header is continuous.
	IP6_EXTHDR_CHECK calls m_pullup() only if the mbuf has M_LOOP flag,
	that is, the packet comes from the loopback interface. m_pullup()
	is never called for packets coming from physical network interfaces.
	
Both IP and IP6 reassemble functions never call m_pullup().
8.1.1.12. IPv4 mapped address and IPv6 wildcard socket
RFC2553 describes IPv4 mapped address (3.7) and special behavior
	of IPv6 wildcard bind socket (3.8). The spec allows you to:
	Accept IPv4 connections by AF_INET6 wildcard bind
	 socket.

	Transmit IPv4 packet over AF_INET6 socket by using
	 special form of the address like ::ffff:10.1.1.1.

but the spec itself is very complicated and does not specify
	how the socket layer should behave. Here we call the former one
	"listening side" and the latter one "initiating side", for
	reference purposes.
You can perform wildcard bind on both of the address families,
	on the same port.
The following table show the behavior of FreeBSD 4.x.
listening side initiating side
 (AF_INET6 wildcard (connection to ::ffff:10.1.1.1)
 socket gets IPv4 conn.)
 --- ---
FreeBSD 4.x configurable supported
 default: enabled
	
The following sections will give you more details, and how you can
	configure the behavior.
Comments on listening side:
It looks that RFC2553 talks too little on wildcard bind issue,
	especially on the port space issue, failure mode and relationship
	between AF_INET/INET6 wildcard bind. There can be several separate
	interpretation for this RFC which conform to it but behaves differently.
	So, to implement portable application you should assume nothing
	about the behavior in the kernel. Using getaddrinfo(3) is the
	safest way. Port number space and wildcard bind issues were discussed
	in detail on ipv6imp mailing list, in mid March 1999 and it looks
	that there is no concrete consensus (means, up to implementers).
	You may want to check the mailing list archives.
If a server application would like to accept IPv4 and IPv6
	connections, there will be two alternatives.
One is using AF_INET and AF_INET6 socket (you will need two
	sockets). Use getaddrinfo(3) with AI_PASSIVE into ai_flags,
	and socket(2) and bind(2) to all the addresses returned.
	By opening multiple sockets, you can accept connections onto the
	socket with proper address family. IPv4 connections will be
	accepted by AF_INET socket, and IPv6 connections will be accepted
	by AF_INET6 socket.
Another way is using one AF_INET6 wildcard bind socket. Use
	getaddrinfo(3) with AI_PASSIVE into ai_flags and with
	AF_INET6 into ai_family, and set the 1st argument hostname to
	NULL. And socket(2) and bind(2) to the address returned.
	(should be IPv6 unspecified addr). You can accept either of IPv4
	and IPv6 packet via this one socket.
To support only IPv6 traffic on AF_INET6 wildcard binded socket
	portably, always check the peer address when a connection is made
	toward AF_INET6 listening socket. If the address is IPv4 mapped
	address, you may want to reject the connection. You can check the
	condition by using IN6_IS_ADDR_V4MAPPED() macro.
To resolve this issue more easily, there is system dependent
	setsockopt(2) option, IPV6_BINDV6ONLY, used like below.
	int on;

	setsockopt(s, IPPROTO_IPV6, IPV6_BINDV6ONLY,
		 (char *)&on, sizeof (on)) < 0));
	
When this call succeed, then this socket only receive IPv6
	packets.
Comments on initiating side:
Advise to application implementers: to implement a portable
	IPv6 application (which works on multiple IPv6 kernels), we believe
	that the following is the key to the success:
	NEVER hardcode AF_INET nor AF_INET6.

	Use getaddrinfo(3) and getnameinfo(3)
	 throughout the system. Never use gethostby*(), getaddrby*(),
	 inet_*() or getipnodeby*(). (To update existing applications
	 to be IPv6 aware easily, sometime getipnodeby*() will be
	 useful. But if possible, try to rewrite the code to use
	 getaddrinfo(3) and getnameinfo(3).)

	If you would like to connect to destination, use
	 getaddrinfo(3) and try all the destination returned,
	 like telnet(1) does.

	Some of the IPv6 stack is shipped with buggy
	 getaddrinfo(3). Ship a minimal working version with
	 your application and use that as last resort.

If you would like to use AF_INET6 socket for both IPv4 and
	IPv6 outgoing connection, you will need to use getipnodebyname(3).
	When you would like to update your existing application to be IPv6
	aware with minimal effort, this approach might be chosen. But please
	note that it is a temporal solution, because getipnodebyname(3)
	itself is not recommended as it does not handle scoped IPv6 addresses
	at all. For IPv6 name resolution, getaddrinfo(3) is the
	preferred API. So you should rewrite your application to use
	getaddrinfo(3), when you get the time to do it.
When writing applications that make outgoing connections,
	story goes much simpler if you treat AF_INET and AF_INET6 as totally
	separate address family. {set,get}sockopt issue goes simpler,
	DNS issue will be made simpler. We do not recommend you to rely
	upon IPv4 mapped address.
8.1.1.12.1. unified tcp and inpcb code
FreeBSD 4.x uses shared tcp code between IPv4 and IPv6
	 (from sys/netinet/tcp*) and separate udp4/6 code. It uses
	 unified inpcb structure.
The platform can be configured to support IPv4 mapped address.
	 Kernel configuration is summarized as follows:
	By default, AF_INET6 socket will grab IPv4
	 connections in certain condition, and can initiate
	 connection to IPv4 destination embedded in IPv4 mapped
	 IPv6 address.

	You can disable it on entire system with sysctl like
	 below.

	 sysctl net.inet6.ip6.mapped_addr=0
	

8.1.1.12.1.1. listening side
Each socket can be configured to support special AF_INET6
	 wildcard bind (enabled by default). You can disable it on
	 each socket basis with setsockopt(2) like below.
	int on;

	setsockopt(s, IPPROTO_IPV6, IPV6_BINDV6ONLY,
		 (char *)&on, sizeof (on)) < 0));
	
Wildcard AF_INET6 socket grabs IPv4 connection if and only
	 if the following conditions are satisfied:
	there is no AF_INET socket that matches the IPv4
		connection

	the AF_INET6 socket is configured to accept IPv4
		traffic, i.e. getsockopt(IPV6_BINDV6ONLY) returns 0.

There is no problem with open/close ordering.
8.1.1.12.1.2. initiating side
FreeBSD 4.x supports outgoing connection to IPv4 mapped
	 address (::ffff:10.1.1.1), if the node is configured to support
	 IPv4 mapped address.
8.1.1.13. sockaddr_storage
When RFC2553 was about to be finalized, there was discussion on
	how struct sockaddr_storage members are named. One proposal is to
	prepend "__" to the members (like "__ss_len") as they should not be
	touched. The other proposal was not to prepend it (like "ss_len")
	as we need to touch those members directly. There was no clear
	consensus on it.
As a result, RFC2553 defines struct sockaddr_storage as
	follows:
	struct sockaddr_storage {
		u_char	__ss_len;	/* address length */
		u_char	__ss_family;	/* address family */
		/* and bunch of padding */
	};
	
On the contrary, XNET draft defines as follows:
	struct sockaddr_storage {
		u_char	ss_len;		/* address length */
		u_char	ss_family;	/* address family */
		/* and bunch of padding */
	};
	
In December 1999, it was agreed that RFC2553bis should pick
	the latter (XNET) definition.
Current implementation conforms to XNET definition, based on
	RFC2553bis discussion.
If you look at multiple IPv6 implementations, you will be able
	to see both definitions. As an userland programmer, the most
	portable way of dealing with it is to:
	ensure ss_family and/or ss_len are available on the
	 platform, by using GNU autoconf,

	have -Dss_family=__ss_family to unify all occurrences
	 (including header file) into __ss_family, or

	never touch __ss_family. cast to sockaddr * and use sa_family
	 like:
	struct sockaddr_storage ss;
	family = ((struct sockaddr *)&ss)->sa_family
	

8.1.2. Network Drivers
Now following two items are required to be supported by standard
 drivers:
	mbuf clustering requirement. In this stable release, we
 changed MINCLSIZE into MHLEN+1 for all the operating systems
 in order to make all the drivers behave as we expect.

	multicast. If ifmcstat(8) yields no multicast group for
 a interface, that interface has to be patched.

If any of the drivers do not support the requirements, then
 the drivers can not be used for IPv6 and/or IPsec communication. If
 you find any problem with your card using IPv6/IPsec, then, please
 report it to the FreeBSD problem reports 郵遞論壇.
(NOTE: In the past we required all PCMCIA drivers to have a
 call to in6_ifattach(). We have no such requirement any more)
8.1.3. Translator
We categorize IPv4/IPv6 translator into 4 types:
	Translator A --- It is used in the early
	 stage of transition to make it possible to establish a
	 connection from an IPv6 host in an IPv6 island to an IPv4 host
	 in the IPv4 ocean.

	Translator B --- It is used in the early
	 stage of transition to make it possible to establish a connection
	 from an IPv4 host in the IPv4 ocean to an IPv6 host in an
	 IPv6 island.

	Translator C --- It is used in the late
	 stage of transition to make it possible to establish a
	 connection from an IPv4 host in an IPv4 island to an IPv6 host
	 in the IPv6 ocean.

	Translator D --- It is used in the late
	 stage of transition to make it possible to establish a
	 connection from an IPv6 host in the IPv6 ocean to an IPv4 host
	 in an IPv4 island.

TCP relay translator for category A is supported. This is called
	"FAITH". We also provide IP header translator for category A.
	(The latter is not yet put into FreeBSD 4.x yet.)
8.1.3.1. FAITH TCP relay translator
FAITH system uses TCP relay daemon called faithd(8) helped
	by the kernel. FAITH will reserve an IPv6 address prefix, and relay
	TCP connection toward that prefix to IPv4 destination.
For example, if the reserved IPv6 prefix is
	3ffe:0501:0200:ffff::, and the IPv6 destination for TCP connection
	is 3ffe:0501:0200:ffff::163.221.202.12, the connection will be
	relayed toward IPv4 destination 163.221.202.12.
	destination IPv4 node (163.221.202.12)
	 ^
	 | IPv4 tcp toward 163.221.202.12
	FAITH-relay dual stack node
	 ^
	 | IPv6 TCP toward 3ffe:0501:0200:ffff::163.221.202.12
	source IPv6 node
	
faithd(8) must be invoked on FAITH-relay dual stack
	node.
For more details, consult
	src/usr.sbin/faithd/README
8.1.4. IPsec
IPsec is mainly organized by three components.
	Policy Management

	Key Management

	AH and ESP handling

8.1.4.1. Policy Management
The kernel implements experimental policy management code.
	There are two way to manage security policy. One is to configure
	per-socket policy using setsockopt(2). In this cases, policy
	configuration is described in ipsec_set_policy(3). The other
	is to configure kernel packet filter-based policy using PF_KEY
	interface, via setkey(8).
The policy entry is not re-ordered with its
	indexes, so the order of entry when you add is very significant.
8.1.4.2. Key Management
The key management code implemented in this kit (sys/netkey)
	is a home-brew PFKEY v2 implementation. This conforms to RFC2367.
	
The home-brew IKE daemon, "racoon" is included in the
	kit (kame/kame/racoon). Basically you will need to run racoon as
	daemon, then set up a policy to require keys (like
	ping -P 'out ipsec esp/transport//use').
	The kernel will contact racoon daemon as necessary to exchange
	keys.
8.1.4.3. AH and ESP handling
IPsec module is implemented as "hooks" to the standard IPv4/IPv6
	processing. When sending a packet, ip{,6}_output() checks if ESP/AH
	processing is required by checking if a matching SPD (Security
	Policy Database) is found. If ESP/AH is needed,
	{esp,ah}{4,6}_output() will be called and mbuf will be updated
	accordingly. When a packet is received, {esp,ah}4_input() will be
	called based on protocol number, i.e. (*inetsw[proto])().
	{esp,ah}4_input() will decrypt/check authenticity of the packet,
	and strips off daisy-chained header and padding for ESP/AH. It is
	safe to strip off the ESP/AH header on packet reception, since we
	will never use the received packet in "as is" form.
By using ESP/AH, TCP4/6 effective data segment size will be
	affected by extra daisy-chained headers inserted by ESP/AH. Our
	code takes care of the case.
Basic crypto functions can be found in directory "sys/crypto".
	ESP/AH transform are listed in {esp,ah}_core.c with wrapper functions.
	If you wish to add some algorithm, add wrapper function in
	{esp,ah}_core.c, and add your crypto algorithm code into
	sys/crypto.
Tunnel mode is partially supported in this release, with the
	following restrictions:
	IPsec tunnel is not combined with GIF generic tunneling
	 interface. It needs a great care because we may create an
	 infinite loop between ip_output() and tunnelifp->if_output().
	 Opinion varies if it is better to unify them, or not.

	MTU and Don't Fragment bit (IPv4) considerations need more
	 checking, but basically works fine.

	Authentication model for AH tunnel must be revisited.
	 We will need to improve the policy management engine,
	 eventually.

8.1.4.4. Conformance to RFCs and IDs
The IPsec code in the kernel conforms (or, tries to conform)
	to the following standards:
"old IPsec" specification documented in
	rfc182[5-9].txt
"new IPsec" specification documented in
	rfc240[1-6].txt,
	rfc241[01].txt, rfc2451.txt
	and draft-mcdonald-simple-ipsec-api-01.txt
	(draft expired, but you can take from
	ftp://ftp.kame.net/pub/internet-drafts/).
	(NOTE: IKE specifications, rfc241[7-9].txt are
	implemented in userland, as "racoon" IKE daemon)
Currently supported algorithms are:
	old IPsec AH
	null crypto checksum (no document, just for
		debugging)

	keyed MD5 with 128bit crypto checksum
		(rfc1828.txt)

	keyed SHA1 with 128bit crypto checksum
		(no document)

	HMAC MD5 with 128bit crypto checksum
		(rfc2085.txt)

	HMAC SHA1 with 128bit crypto checksum
		(no document)

	old IPsec ESP
	null encryption (no document, similar to
		rfc2410.txt)

	DES-CBC mode (rfc1829.txt)

	new IPsec AH
	null crypto checksum (no document,
		just for debugging)

	keyed MD5 with 96bit crypto checksum
		(no document)

	keyed SHA1 with 96bit crypto checksum
		(no document)

	HMAC MD5 with 96bit crypto checksum
		(rfc2403.txt)

	HMAC SHA1 with 96bit crypto checksum
		(rfc2404.txt)

	new IPsec ESP
	null encryption
		(rfc2410.txt)

	DES-CBC with derived IV
		(draft-ietf-ipsec-ciph-des-derived-01.txt,
		draft expired)

	DES-CBC with explicit IV
		(rfc2405.txt)

	3DES-CBC with explicit IV
		(rfc2451.txt)

	BLOWFISH CBC
		(rfc2451.txt)

	CAST128 CBC
		(rfc2451.txt)

	RC5 CBC
		(rfc2451.txt)

	each of the above can be combined with:
	ESP authentication with HMAC-MD5(96bit)

	ESP authentication with HMAC-SHA1(96bit)

The following algorithms are NOT supported:
	old IPsec AH
	HMAC MD5 with 128bit crypto checksum + 64bit
		replay prevention (rfc2085.txt)

	keyed SHA1 with 160bit crypto checksum + 32bit padding
		(rfc1852.txt)

IPsec (in kernel) and IKE (in userland as "racoon") has been
	tested at several interoperability test events, and it is known to
	interoperate with many other implementations well. Also, current
	IPsec implementation as quite wide coverage for IPsec crypto
	algorithms documented in RFC (we cover algorithms without intellectual
	property issues only).
8.1.4.5. ECN consideration on IPsec tunnels
ECN-friendly IPsec tunnel is supported as described in
	draft-ipsec-ecn-00.txt.
Normal IPsec tunnel is described in RFC2401. On encapsulation,
	IPv4 TOS field (or, IPv6 traffic class field) will be copied from inner
	IP header to outer IP header. On decapsulation outer IP header
	will be simply dropped. The decapsulation rule is not compatible
	with ECN, since ECN bit on the outer IP TOS/traffic class field will be
	lost.
To make IPsec tunnel ECN-friendly, we should modify encapsulation
	and decapsulation procedure. This is described in
	http://www.aciri.org/floyd/papers/draft-ipsec-ecn-00.txt,
	chapter 3.
IPsec tunnel implementation can give you three behaviors, by
	setting net.inet.ipsec.ecn (or net.inet6.ipsec6.ecn) to some
	value:
	RFC2401: no consideration for ECN (sysctl value -1)

	ECN forbidden (sysctl value 0)

	ECN allowed (sysctl value 1)

Note that the behavior is configurable in per-node manner,
	not per-SA manner (draft-ipsec-ecn-00 wants per-SA configuration,
	but it looks too much for me).
The behavior is summarized as follows (see source code for
	more detail):

 encapsulate decapsulate
 --- ---
RFC2401 copy all TOS bits drop TOS bits on outer
 from inner to outer. (use inner TOS bits as is)

ECN forbidden copy TOS bits except for ECN drop TOS bits on outer
 (masked with 0xfc) from inner (use inner TOS bits as is)
 to outer. set ECN bits to 0.

ECN allowed copy TOS bits except for ECN use inner TOS bits with some
 CE (masked with 0xfe) from change. if outer ECN CE bit
 inner to outer. is 1, enable ECN CE bit on
 set ECN CE bit to 0. the inner.

	
General strategy for configuration is as follows:
	if both IPsec tunnel endpoint are capable of ECN-friendly
	 behavior, you should better configure both end to “ECN allowed”
	 (sysctl value 1).

	if the other end is very strict about TOS bit, use "RFC2401"
 (sysctl value -1).

	in other cases, use "ECN forbidden" (sysctl value 0).

The default behavior is "ECN forbidden" (sysctl value 0).
For more information, please refer to:

	http://www.aciri.org/floyd/papers/draft-ipsec-ecn-00.txt,
	RFC2481 (Explicit Congestion Notification),
	src/sys/netinet6/{ah,esp}_input.c
(Thanks goes to Kenjiro Cho <kjc@csl.sony.co.jp>
	for detailed analysis)
8.1.4.6. Interoperability
Here are (some of) platforms that KAME code have tested
	IPsec/IKE interoperability in the past. Note that both ends may
	have modified their implementation, so use the following list just
	for reference purposes.
Altiga, Ashley-laurent (vpcom.com), Data Fellows (F-Secure),
	Ericsson ACC, FreeS/WAN, HITACHI, IBM AIX®, IIJ, Intel,
	Microsoft® Windows NT®, NIST (linux IPsec + plutoplus), Netscreen, OpenBSD,
	RedCreek, Routerware, SSH, Secure Computing, Soliton, Toshiba,
	VPNet, Yamaha RT100i
部 III. Kernel(核心)

章 9. Kernel Debugging
Contributed by Paul Richards 且 Jörg Wunsch. 9.1. Obtaining a Kernel Crash Dump
When running a development kernel (eg: FreeBSD-CURRENT), such as a
 kernel under extreme conditions (eg: very high load averages,
 tens of thousands of connections, exceedingly high number of
 concurrent users, hundreds of jail(8)s, etc.), or using a
 new feature or device driver on FreeBSD-STABLE (eg:
 PAE), sometimes a kernel will panic. In the
 event that it does, this chapter will demonstrate how to extract
 useful information out of a crash.
A system reboot is inevitable once a kernel panics. Once a
 system is rebooted, the contents of a system's physical memory
 (RAM) is lost, as well as any bits that are
 on the swap device before the panic. To preserve the bits in
 physical memory, the kernel makes use of the swap device as a
 temporary place to store the bits that are in RAM across a
 reboot after a crash. In doing this, when FreeBSD boots after a
 crash, a kernel image can now be extracted and debugging can
 take place.
注意:
A swap device that has been configured as a dump
 device still acts as a swap device. Dumps to non-swap devices
 (such as tapes or CDRWs, for example) are not supported at this time. A
 “swap device” is synonymous with a “swap
 partition.”

To be able to extract a usable core, it is required that at
 least one swap partition be large enough to hold all of the bits
 in physical memory. When a kernel panics, before the system
 reboots, the kernel is smart enough to check to see if a swap
 device has been configured as a dump device. If there is a
 valid dump device, the kernel dumps the contents of what is in
 physical memory to the swap device.
9.1.1. Configuring the Dump Device
Before the kernel will dump the contents of its physical
	memory to a dump device, a dump device must be configured. A
	dump device is specified by using the dumpon(8) command
	to tell the kernel where to save kernel crash dumps. The
	dumpon(8) program must be called after the swap partition
	has been configured with swapon(8). This is normally
	handled by setting the dumpdev variable in
	rc.conf(5) to the path of the swap device (the
	recommended way to extract a kernel dump).
Alternatively, the dump device can be hard-coded via the
	dump clause in the config(5) line of
	a kernel configuration file. This approach is deprecated and should
	be used only if a kernel is crashing before dumpon(8) can be executed.
提示:
Check /etc/fstab or
	swapinfo(8) for a list of swap devices.

重要:
Make sure the dumpdir
 specified in rc.conf(5) exists before a kernel
 crash!
mkdir /var/crash
chmod 700 /var/crash
Also, remember that the contents of
	 /var/crash is sensitive and very likely
	 contains confidential information such as passwords.

9.1.2. Extracting a Kernel Dump
Once a dump has been written to a dump device, the dump
	 must be extracted before the swap device is mounted.
	 To extract a dump
	 from a dump device, use the savecore(8) program. If
	 dumpdev has been set in rc.conf(5),
	 savecore(8) will be called automatically on the first
	 multi-user boot after the crash and before the swap device
	 is mounted. The location of the extracted core is placed in
	 the rc.conf(5) value dumpdir, by
	 default /var/crash and will be named
	 vmcore.0.
In the event that there is already a file called
 vmcore.0 in
 /var/crash (or whatever
 dumpdir is set to), the kernel will
 increment the trailing number for every crash to avoid
 overwriting an existing vmcore (eg:
 vmcore.1). While debugging, it is
 highly likely that you will want to use the highest version
 vmcore in
 /var/crash when searching for the right
 vmcore.
提示:
If you are testing a new kernel but need to boot a different one in
 order to get your system up and running again, boot it only into single
 user mode using the -s flag at the boot prompt, and
 then perform the following steps:
fsck -p
mount -a -t ufs # make sure /var/crash is writable
savecore /var/crash /dev/ad0s1b
exit # exit to multi-user
This instructs savecore(8) to extract a kernel dump
 from /dev/ad0s1b and place the contents in
 /var/crash. Do not forget to make sure the
 destination directory /var/crash has enough
 space for the dump. Also, do not forget to specify the correct path to your swap
 device as it is likely different than
 /dev/ad0s1b!

The recommended, and certainly the easiest way to automate
 obtaining crash dumps is to use the dumpdev
 variable in rc.conf(5).
9.2. Debugging a Kernel Crash Dump with kgdb
注意:
This section covers kgdb(1) as found in FreeBSD 5.3
	and later. In previous versions, one must use
	gdb -k to read a core dump file.

Once a dump has been obtained, getting useful information
 out of the dump is relatively easy for simple problems. Before
 launching into the internals of kgdb(1) to debug
 the crash dump, locate the debug version of your kernel
 (normally called kernel.debug) and the path
 to the source files used to build your kernel (normally
 /usr/obj/usr/src/sys/KERNCONF,
 where KERNCONF
 is the ident specified in a kernel
 config(5)). With those two pieces of info, let the
 debugging commence!
To enter into the debugger and begin getting information
 from the dump, the following steps are required at a minimum:
cd /usr/obj/usr/src/sys/KERNCONF
kgdb kernel.debug /var/crash/vmcore.0
You can debug the crash dump using the kernel sources just like
 you can for any other program.
This first dump is from a 5.2-BETA kernel and the crash
 comes from deep within the kernel. The output below has been
 modified to include line numbers on the left. This first trace
 inspects the instruction pointer and obtains a back trace. The
 address that is used on line 41 for the list
 command is the instruction pointer and can be found on line
 17. Most developers will request having at least this
 information sent to them if you are unable to debug the problem
 yourself. If, however, you do solve the problem, make sure that
 your patch winds its way into the source tree via a problem
 report, mailing lists, or by being able to commit it!
 1:# cd /usr/obj/usr/src/sys/KERNCONF
 2:# kgdb kernel.debug /var/crash/vmcore.0
 3:GNU gdb 5.2.1 (FreeBSD)
 4:Copyright 2002 Free Software Foundation, Inc.
 5:GDB is free software, covered by the GNU General Public License, and you are
 6:welcome to change it and/or distribute copies of it under certain conditions.
 7:Type "show copying" to see the conditions.
 8:There is absolutely no warranty for GDB. Type "show warranty" for details.
 9:This GDB was configured as "i386-undermydesk-freebsd"...
10:panic: page fault
11:panic messages:
12:---
13:Fatal trap 12: page fault while in kernel mode
14:cpuid = 0; apic id = 00
15:fault virtual address = 0x300
16:fault code: = supervisor read, page not present
17:instruction pointer = 0x8:0xc0713860
18:stack pointer = 0x10:0xdc1d0b70
19:frame pointer = 0x10:0xdc1d0b7c
20:code segment = base 0x0, limit 0xfffff, type 0x1b
21: = DPL 0, pres 1, def32 1, gran 1
22:processor eflags = resume, IOPL = 0
23:current process = 14394 (uname)
24:trap number = 12
25:panic: page fault
26 cpuid = 0;
27:Stack backtrace:
28
29:syncing disks, buffers remaining... 2199 2199 panic: mi_switch: switch in a critical section
30:cpuid = 0;
31:Uptime: 2h43m19s
32:Dumping 255 MB
33: 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
34:---
35:Reading symbols from /boot/kernel/snd_maestro3.ko...done.
36:Loaded symbols for /boot/kernel/snd_maestro3.ko
37:Reading symbols from /boot/kernel/snd_pcm.ko...done.
38:Loaded symbols for /boot/kernel/snd_pcm.ko
39:#0 doadump () at /usr/src/sys/kern/kern_shutdown.c:240
40:240 dumping++;
41:(kgdb) list *0xc0713860
42:0xc0713860 is in lapic_ipi_wait (/usr/src/sys/i386/i386/local_apic.c:663).
43:658 incr = 0;
44:659 delay = 1;
45:660 } else
46:661 incr = 1;
47:662 for (x = 0; x < delay; x += incr) {
48:663 if ((lapic->icr_lo & APIC_DELSTAT_MASK) == APIC_DELSTAT_IDLE)
49:664 return (1);
50:665 ia32_pause();
51:666 }
52:667 return (0);
53:(kgdb) backtrace
54:#0 doadump () at /usr/src/sys/kern/kern_shutdown.c:240
55:#1 0xc055fd9b in boot (howto=260) at /usr/src/sys/kern/kern_shutdown.c:372
56:#2 0xc056019d in panic () at /usr/src/sys/kern/kern_shutdown.c:550
57:#3 0xc0567ef5 in mi_switch () at /usr/src/sys/kern/kern_synch.c:470
58:#4 0xc055fa87 in boot (howto=256) at /usr/src/sys/kern/kern_shutdown.c:312
59:#5 0xc056019d in panic () at /usr/src/sys/kern/kern_shutdown.c:550
60:#6 0xc0720c66 in trap_fatal (frame=0xdc1d0b30, eva=0)
61: at /usr/src/sys/i386/i386/trap.c:821
62:#7 0xc07202b3 in trap (frame=
63: {tf_fs = -1065484264, tf_es = -1065484272, tf_ds = -1065484272, tf_edi = 1, tf_esi = 0, tf_ebp = -602076292, tf_isp = -602076324, tf_ebx = 0, tf_edx = 0, tf_ecx = 1000000, tf_eax = 243, tf_trapno = 12, tf_err = 0, tf_eip = -1066321824, tf_cs = 8, tf_eflags = 65671, tf_esp = 243, tf_ss = 0})
64: at /usr/src/sys/i386/i386/trap.c:250
65:#8 0xc070c9f8 in calltrap () at {standard input}:94
66:#9 0xc07139f3 in lapic_ipi_vectored (vector=0, dest=0)
67: at /usr/src/sys/i386/i386/local_apic.c:733
68:#10 0xc0718b23 in ipi_selected (cpus=1, ipi=1)
69: at /usr/src/sys/i386/i386/mp_machdep.c:1115
70:#11 0xc057473e in kseq_notify (ke=0xcc05e360, cpu=0)
71: at /usr/src/sys/kern/sched_ule.c:520
72:#12 0xc0575cad in sched_add (td=0xcbcf5c80)
73: at /usr/src/sys/kern/sched_ule.c:1366
74:#13 0xc05666c6 in setrunqueue (td=0xcc05e360)
75: at /usr/src/sys/kern/kern_switch.c:422
76:#14 0xc05752f4 in sched_wakeup (td=0xcbcf5c80)
77: at /usr/src/sys/kern/sched_ule.c:999
78:#15 0xc056816c in setrunnable (td=0xcbcf5c80)
79: at /usr/src/sys/kern/kern_synch.c:570
80:#16 0xc0567d53 in wakeup (ident=0xcbcf5c80)
81: at /usr/src/sys/kern/kern_synch.c:411
82:#17 0xc05490a8 in exit1 (td=0xcbcf5b40, rv=0)
83: at /usr/src/sys/kern/kern_exit.c:509
84:#18 0xc0548011 in sys_exit () at /usr/src/sys/kern/kern_exit.c:102
85:#19 0xc0720fd0 in syscall (frame=
86: {tf_fs = 47, tf_es = 47, tf_ds = 47, tf_edi = 0, tf_esi = -1, tf_ebp = -1077940712, tf_isp = -602075788, tf_ebx = 672411944, tf_edx = 10, tf_ecx = 672411600, tf_eax = 1, tf_trapno = 12, tf_err = 2, tf_eip = 671899563, tf_cs = 31, tf_eflags = 642, tf_esp = -1077940740, tf_ss = 47})
87: at /usr/src/sys/i386/i386/trap.c:1010
88:#20 0xc070ca4d in Xint0x80_syscall () at {standard input}:136
89:---Can't read userspace from dump, or kernel process---
90:(kgdb) quit
This next trace is an older dump from the FreeBSD 2 time
 frame, but is more involved and demonstrates more of the
 features of gdb. Long lines have been folded
 to improve readability, and the lines are numbered for
 reference. Despite this, it is a real-world error trace taken
 during the development of the pcvt console driver.
 1:Script started on Fri Dec 30 23:15:22 1994
 2:# cd /sys/compile/URIAH
 3:# gdb -k kernel /var/crash/vmcore.1
 4:Reading symbol data from /usr/src/sys/compile/URIAH/kernel
...done.
 5:IdlePTD 1f3000
 6:panic: because you said to!
 7:current pcb at 1e3f70
 8:Reading in symbols for ../../i386/i386/machdep.c...done.
 9:(kgdb) backtrace
10:#0 boot (arghowto=256) (../../i386/i386/machdep.c line 767)
11:#1 0xf0115159 in panic ()
12:#2 0xf01955bd in diediedie () (../../i386/i386/machdep.c line 698)
13:#3 0xf010185e in db_fncall ()
14:#4 0xf0101586 in db_command (-266509132, -266509516, -267381073)
15:#5 0xf0101711 in db_command_loop ()
16:#6 0xf01040a0 in db_trap ()
17:#7 0xf0192976 in kdb_trap (12, 0, -272630436, -266743723)
18:#8 0xf019d2eb in trap_fatal (...)
19:#9 0xf019ce60 in trap_pfault (...)
20:#10 0xf019cb2f in trap (...)
21:#11 0xf01932a1 in exception:calltrap ()
22:#12 0xf0191503 in cnopen (...)
23:#13 0xf0132c34 in spec_open ()
24:#14 0xf012d014 in vn_open ()
25:#15 0xf012a183 in open ()
26:#16 0xf019d4eb in syscall (...)
27:(kgdb) up 10
28:Reading in symbols for ../../i386/i386/trap.c...done.
29:#10 0xf019cb2f in trap (frame={tf_es = -260440048, tf_ds = 16, tf_\
30:edi = 3072, tf_esi = -266445372, tf_ebp = -272630356, tf_isp = -27\
31:2630396, tf_ebx = -266427884, tf_edx = 12, tf_ecx = -266427884, tf\
32:_eax = 64772224, tf_trapno = 12, tf_err = -272695296, tf_eip = -26\
33:6672343, tf_cs = -266469368, tf_eflags = 66066, tf_esp = 3072, tf_\
34:ss = -266427884}) (../../i386/i386/trap.c line 283)
35:283 (void) trap_pfault(&frame, FALSE);
36:(kgdb) frame frame->tf_ebp frame->tf_eip
37:Reading in symbols for ../../i386/isa/pcvt/pcvt_drv.c...done.
38:#0 0xf01ae729 in pcopen (dev=3072, flag=3, mode=8192, p=(struct p\
39:roc *) 0xf07c0c00) (../../i386/isa/pcvt/pcvt_drv.c line 403)
40:403 return ((*linesw[tp->t_line].l_open)(dev, tp));
41:(kgdb) list
42:398
43:399 tp->t_state |= TS_CARR_ON;
44:400 tp->t_cflag |= CLOCAL; /* cannot be a modem (:-) */
45:401
46:402 #if PCVT_NETBSD || (PCVT_FREEBSD >= 200)
47:403 return ((*linesw[tp->t_line].l_open)(dev, tp));
48:404 #else
49:405 return ((*linesw[tp->t_line].l_open)(dev, tp, flag));
50:406 #endif /* PCVT_NETBSD || (PCVT_FREEBSD >= 200) */
51:407 }
52:(kgdb) print tp
53:Reading in symbols for ../../i386/i386/cons.c...done.
54:$1 = (struct tty *) 0x1bae
55:(kgdb) print tp->t_line
56:$2 = 1767990816
57:(kgdb) up
58:#1 0xf0191503 in cnopen (dev=0x00000000, flag=3, mode=8192, p=(st\
59:ruct proc *) 0xf07c0c00) (../../i386/i386/cons.c line 126)
60: return ((*cdevsw[major(dev)].d_open)(dev, flag, mode, p));
61:(kgdb) up
62:#2 0xf0132c34 in spec_open ()
63:(kgdb) up
64:#3 0xf012d014 in vn_open ()
65:(kgdb) up
66:#4 0xf012a183 in open ()
67:(kgdb) up
68:#5 0xf019d4eb in syscall (frame={tf_es = 39, tf_ds = 39, tf_edi =\
69: 2158592, tf_esi = 0, tf_ebp = -272638436, tf_isp = -272629788, tf\
70:_ebx = 7086, tf_edx = 1, tf_ecx = 0, tf_eax = 5, tf_trapno = 582, \
71:tf_err = 582, tf_eip = 75749, tf_cs = 31, tf_eflags = 582, tf_esp \
72:= -272638456, tf_ss = 39}) (../../i386/i386/trap.c line 673)
73:673 error = (*callp->sy_call)(p, args, rval);
74:(kgdb) up
75:Initial frame selected; you cannot go up.
76:(kgdb) quit
Comments to the above script:
	line 6:
	This is a dump taken from within DDB (see below), hence the
	 panic comment “because you said to!”, and a rather
	 long stack trace; the initial reason for going into DDB has been a
	 page fault trap though.

	line 20:
	This is the location of function trap()
	 in the stack trace.

	line 36:
	Force usage of a new stack frame; this is no longer necessary.
	 The stack frames are supposed to point to the right
	 locations now, even in case of a trap.
	 From looking at the code in source line 403, there is a
	 high probability that either the pointer access for
	 “tp” was messed up, or the array access was out of
	 bounds.

	line 52:
	The pointer looks suspicious, but happens to be a valid
	 address.

	line 56:
	However, it obviously points to garbage, so we have found our
	 error! (For those unfamiliar with that particular piece of code:
	 tp->t_line refers to the line discipline of
	 the console device here, which must be a rather small integer
	 number.)

提示:
If your system is crashing regularly and you are running
 out of disk space, deleting old vmcore
 files in /var/crash could save a
 considerable amount of disk space!

9.3. Debugging a Crash Dump with DDD
Examining a kernel crash dump with a graphical debugger like
 ddd is also possible (you will need to install
 the devel/ddd port in order to use the
 ddd debugger). Add the -k
 option to the ddd command line you would use
 normally. For example;
ddd -k /var/crash/kernel.0 /var/crash/vmcore.0
You should then be able to go about looking at the crash dump using
 ddd's graphical interface.
9.4. Post-Mortem Analysis of a Dump
What do you do if a kernel dumped core but you did not expect it,
 and it is therefore not compiled using config -g? Not
 everything is lost here. Do not panic!
Of course, you still need to enable crash dumps. See above for the
 options you have to specify in order to do this.
Go to your kernel config directory
 (/usr/src/sys/arch/conf)
 and edit your configuration file. Uncomment (or add, if it does not
 exist) the following line:
makeoptions DEBUG=-g #Build kernel with gdb(1) debug symbols
Rebuild the kernel. Due to the time stamp change on the Makefile,
 some other object files will be rebuilt, for example
 trap.o. With a bit of luck, the added
 -g option will not change anything for the generated
 code, so you will finally get a new kernel with similar code to the
 faulting one but with some debugging symbols. You should at least verify the
 old and new sizes with the size(1) command. If there is a
 mismatch, you probably need to give up here.
Go and examine the dump as described above. The debugging symbols
 might be incomplete for some places, as can be seen in the stack trace
 in the example above where some functions are displayed without line
 numbers and argument lists. If you need more debugging symbols, remove
 the appropriate object files, recompile the kernel again and repeat the
 gdb -k
 session until you know enough.
All this is not guaranteed to work, but it will do it fine in most
 cases.
9.5. On-Line Kernel Debugging Using DDB
While gdb -k as an off-line debugger provides a very
 high level of user interface, there are some things it cannot do. The
 most important ones being breakpointing and single-stepping kernel
 code.
If you need to do low-level debugging on your kernel, there is an
 on-line debugger available called DDB. It allows setting of
 breakpoints, single-stepping kernel functions, examining and changing
 kernel variables, etc. However, it cannot access kernel source files,
 and only has access to the global and static symbols, not to the full
 debug information like gdb does.
To configure your kernel to include DDB, add the option line

options DDB

 to your config file, and rebuild. (See The FreeBSD Handbook for details on
 configuring the FreeBSD kernel).
注意:
If you have an older version of the boot blocks, your
	debugger symbols might not be loaded at all. Update the boot blocks;
	the recent ones load the DDB symbols automatically.

Once your DDB kernel is running, there are several ways to enter
 DDB. The first, and earliest way is to type the boot flag
 -d right at the boot prompt. The kernel will start up
 in debug mode and enter DDB prior to any device probing. Hence you can
 even debug the device probe/attach functions.
The second scenario is to drop to the debugger once the
 system has booted. There are two simple ways to accomplish
 this. If you would like to break to the debugger from the
 command prompt, simply type the command:
sysctl debug.enter_debugger=ddb
Alternatively, if you are at the system console, you may use
 a hot-key on the keyboard. The default break-to-debugger
 sequence is Ctrl+Alt+ESC. For
 syscons, this sequence can be remapped and some of the
 distributed maps out there do this, so check to make sure you
 know the right sequence to use. There is an option available
 for serial consoles that allows the use of a serial line BREAK on the
 console line to enter DDB (options BREAK_TO_DEBUGGER
 in the kernel config file). It is not the default since there are a lot
 of serial adapters around that gratuitously generate a BREAK
 condition, for example when pulling the cable.
The third way is that any panic condition will branch to DDB if the
 kernel is configured to use it. For this reason, it is not wise to
 configure a kernel with DDB for a machine running unattended.
The DDB commands roughly resemble some gdb
 commands. The first thing you probably need to do is to set a
 breakpoint:
b function-name
b address
Numbers are taken hexadecimal by default, but to make them distinct
 from symbol names; hexadecimal numbers starting with the letters
 a-f need to be preceded with 0x
 (this is optional for other numbers). Simple expressions are allowed,
 for example: function-name + 0x103.
To continue the operation of an interrupted kernel, simply
 type:
c
To get a stack trace, use:
trace
注意:
Note that when entering DDB via a hot-key, the kernel is currently
	servicing an interrupt, so the stack trace might be not of much use
	to you.

If you want to remove a breakpoint, use
del
del address-expression
The first form will be accepted immediately after a breakpoint hit,
 and deletes the current breakpoint. The second form can remove any
 breakpoint, but you need to specify the exact address; this can be
 obtained from:
show b
To single-step the kernel, try:
s
This will step into functions, but you can make DDB trace them until
 the matching return statement is reached by:
n
注意:
This is different from gdb's
	next statement; it is like gdb's
	finish.

To examine data from memory, use (for example):

x/wx 0xf0133fe0,40
x/hd db_symtab_space
x/bc termbuf,10
x/s stringbuf

 for word/halfword/byte access, and hexadecimal/decimal/character/ string
 display. The number after the comma is the object count. To display
 the next 0x10 items, simply use:
x ,10
Similarly, use

x/ia foofunc,10

 to disassemble the first 0x10 instructions of
 foofunc, and display them along with their offset
 from the beginning of foofunc.
To modify memory, use the write command:
w/b termbuf 0xa 0xb 0
w/w 0xf0010030 0 0
The command modifier
 (b/h/w)
 specifies the size of the data to be written, the first following
 expression is the address to write to and the remainder is interpreted
 as data to write to successive memory locations.
If you need to know the current registers, use:
show reg
Alternatively, you can display a single register value by e.g.

p $eax

 and modify it by:
set $eax new-value
Should you need to call some kernel functions from DDB, simply
 say:
call func(arg1, arg2, ...)
The return value will be printed.
For a ps(1) style summary of all running processes, use:
ps
Now you have examined why your kernel failed, and you wish to
 reboot. Remember that, depending on the severity of previous
 malfunctioning, not all parts of the kernel might still be working as
 expected. Perform one of the following actions to shut down and reboot
 your system:
panic
This will cause your kernel to dump core and reboot, so you can
 later analyze the core on a higher level with gdb. This command
 usually must be followed by another continue
 statement.
call boot(0)
Which might be a good way to cleanly shut down the running system,
 sync() all disks, and finally reboot. As long as
 the disk and filesystem interfaces of the kernel are not damaged, this
 might be a good way for an almost clean shutdown.
call cpu_reset()
This is the final way out of disaster and almost the same as hitting the
 Big Red Button.
If you need a short command summary, simply type:
help
However, it is highly recommended to have a printed copy of the
	ddb(4) manual page ready for a debugging
 session. Remember that it is hard to read the on-line manual while
 single-stepping the kernel.
9.6. On-Line Kernel Debugging Using Remote GDB
This feature has been supported since FreeBSD 2.2, and it is
 actually a very neat one.
GDB has already supported remote debugging for
 a long time. This is done using a very simple protocol along a serial
 line. Unlike the other methods described above, you will need two
 machines for doing this. One is the host providing the debugging
 environment, including all the sources, and a copy of the kernel binary
 with all the symbols in it, and the other one is the target machine that
 simply runs a similar copy of the very same kernel (but stripped of the
 debugging information).
You should configure the kernel in question with config
	-g, include DDB into the configuration, and
 compile it as usual. This gives a large binary, due to the
 debugging information. Copy this kernel to the target machine, strip
 the debugging symbols off with strip -x, and boot it
 using the -d boot option. Connect the serial line
 of the target machine that has "flags 080" set on its sio device
 to any serial line of the debugging host.
 Now, on the debugging machine, go to the compile directory of the target
 kernel, and start gdb:
% gdb -k kernel
GDB is free software and you are welcome to distribute copies of it
 under certain conditions; type "show copying" to see the conditions.
There is absolutely no warranty for GDB; type "show warranty" for details.
GDB 4.16 (i386-unknown-freebsd),
Copyright 1996 Free Software Foundation, Inc...
(kgdb)
Initialize the remote debugging session (assuming the first serial
 port is being used) by:
(kgdb) target remote /dev/cuaa0
Now, on the target host (the one that entered DDB right before even
 starting the device probe), type:
Debugger("Boot flags requested debugger")
Stopped at Debugger+0x35: movb	$0, edata+0x51bc
db> gdb
DDB will respond with:
Next trap will enter GDB remote protocol mode
Every time you type gdb, the mode will be toggled
 between remote GDB and local DDB. In order to force a next trap
 immediately, simply type s (step). Your hosting GDB
 will now gain control over the target kernel:
Remote debugging using /dev/cuaa0
Debugger (msg=0xf01b0383 "Boot flags requested debugger")
 at ../../i386/i386/db_interface.c:257
(kgdb)
You can use this session almost as any other GDB session, including
 full access to the source, running it in gud-mode inside an Emacs window
 (which gives you an automatic source code display in another Emacs
 window), etc.
9.7. Debugging Loadable Modules Using GDB
When debugging a panic that occurred within a module, or
 using remote GDB against a machine that uses dynamic modules,
 you need to tell GDB how to obtain symbol information for those
 modules.
First, you need to build the module(s) with debugging
 information:
cd /sys/modules/linux
make clean; make COPTS=-g
If you are using remote GDB, you can run
 kldstat on the target machine to find out
 where the module was loaded:
kldstat
Id Refs Address Size Name
 1 4 0xc0100000 1c1678 kernel
 2 1 0xc0a9e000 6000 linprocfs.ko
 3 1 0xc0ad7000 2000 warp_saver.ko
 4 1 0xc0adc000 11000 linux.ko
If you are debugging a crash dump, you will need to walk the
 linker_files list, starting at
 linker_files->tqh_first and following the
 link.tqe_next pointers until you find the
 entry with the filename you are looking for.
 The address member of that entry is the load
 address of the module.
Next, you need to find out the offset of the text section
 within the module:
objdump --section-headers /sys/modules/linux/linux.ko | grep text
 3 .rel.text 000016e0 000038e0 000038e0 000038e0 2**2
 10 .text 00007f34 000062d0 000062d0 000062d0 2**2
The one you want is the .text section,
 section 10 in the above example. The fourth hexadecimal field
 (sixth field overall) is the offset of the text section within
 the file. Add this offset to the load address of the module to
 obtain the relocation address for the module's code. In our
 example, we get 0xc0adc000 + 0x62d0 = 0xc0ae22d0. Use the
 add-symbol-file command in GDB to tell the
 debugger about the module:
(kgdb) add-symbol-file /sys/modules/linux/linux.ko 0xc0ae22d0
add symbol table from file "/sys/modules/linux/linux.ko" at text_addr = 0xc0ae22d0?
(y or n) y
Reading symbols from /sys/modules/linux/linux.ko...done.
(kgdb)
You should now have access to all the symbols in the
 module.
9.8. Debugging a Console Driver
Since you need a console driver to run DDB on, things are more
 complicated if the console driver itself is failing. You might remember
 the use of a serial console (either with modified boot blocks, or by
 specifying -h at the Boot: prompt),
 and hook up a standard terminal onto your first serial port. DDB works
 on any configured console driver, including a serial
 console.
9.9. Debugging the Deadlocks
You may experience so called deadlocks, the situation where
 system stops doing useful work. To provide the helpful bug report
 in this situation, you shall use ddb as described above. Please,
 include the output of ps and
 trace for suspected processes in the
 report.
If possible, consider doing further investigation. Receipt
 below is especially useful if you suspect deadlock occurs in the
 VFS layer. Add the options

makeoptions		DEBUG=-g
	options		INVARIANTS
	options		INVARIANT_SUPPORT
	options		WITNESS
	options		DEBUG_LOCKS
	options		DEBUG_VFS_LOCKS
	options		DIAGNOSTIC

 to the kernel config. When deadlock occurs, in addition to the
 output of the ps command, provide information
 from the show allpcpu, show
 alllocks, show lockedvnods and
 show alltrace.
For threaded processes, to obtain meaningful backtraces, use
 thread thread-id to switch to the thread
 stack, and do backtrace with where.
部 IV. Architectures(電腦架構)

章 10. x86 Assembly Language Programming

This chapter was written by G. Adam Stanislav.

10.1. Synopsis

Assembly language programming under UNIX® is highly undocumented. It
is generally assumed that no one would ever want to use it because
various UNIX® systems run on different microprocessors, so everything
should be written in C for portability.

In reality, C portability is quite a myth. Even C programs need
to be modified when ported from one UNIX® to another, regardless of
what processor each runs on. Typically, such a program is full
of conditional statements depending on the system it is
compiled for.

Even if we believe that all of UNIX® software should be written in C,
or some other high-level language, we still need assembly language
programmers: Who else would write the section of C library
that accesses the kernel?

In this chapter I will attempt to show you
how you can use assembly language writing
UNIX® programs, specifically under FreeBSD.

This chapter does not explain the basics of assembly language.
There are enough resources about that (for a complete
online course in assembly language, see Randall Hyde's
Art
of Assembly Language; or if you prefer
a printed book, take a look at Jeff Duntemann's
Assembly
Language Step-by-Step). However,
once the chapter is finished, any assembly language programmer
will be able to write programs for FreeBSD
quickly and efficiently.

Copyright © 2000-2001 G. Adam Stanislav. All rights reserved.

10.2. The Tools
10.2.1. The Assembler

The most important tool for assembly language programming is the
assembler, the software that converts assembly language code
into machine language.

Two very different assemblers are available for FreeBSD. One is
as(1),
which uses the traditional UNIX® assembly language syntax. It
comes with the system.

The other is /usr/ports/devel/nasm.
It uses the Intel syntax. Its main advantage is that it
can assemble code for many operating systems. It needs
to be installed separately, but is completely free.

This chapter uses nasm
syntax because most assembly language programmers
coming to FreeBSD from other operating systems
will find it easier to understand. And, because,
quite frankly, that is what I am used to.

10.2.2. The Linker

The output of the assembler, like that of any
compiler, needs to be linked to form an executable file.

The standard
ld(1)
linker comes with FreeBSD. It works with the
code assembled with either assembler.

10.3. System Calls
10.3.1. Default Calling Convention

By default, the FreeBSD kernel uses the C calling
convention. Further, although the kernel is accessed
using int 80h,
it is assumed the program will call a function that
issues int 80h, rather than
issuing int 80h directly.

This convention is very convenient, and quite superior to the
Microsoft® convention used by MS-DOS®.
Why? Because the UNIX® convention allows any program written in
any language to access the kernel.

An assembly language program can do that as well.
For example, we could open a file:

kernel:
	int	80h	; Call kernel
	ret

open:
	push	dword mode
	push	dword flags
	push	dword path
	mov	eax, 5
	call	kernel
	add	esp, byte 12
	ret

This is a very clean and portable way of coding. If you need to
port the code to a UNIX® system which uses a different interrupt,
or a different way of passing parameters, all you need to change
is the kernel procedure.

But assembly language programmers like to shave off cycles. The above example
requires a call/ret combination.
We can eliminate it by
pushing an extra dword:

open:
	push	dword mode
	push	dword flags
	push	dword path
	mov	eax, 5
	push	eax		; Or any other dword
	int	80h
	add	esp, byte 16

The 5 that we have placed in
EAX identifies
the kernel function, in this case open.

10.3.2. Alternate Calling Convention

FreeBSD is an extremely flexible system. It offers other ways of
calling the kernel. For it to work, however, the system must
have Linux emulation installed.

Linux is a UNIX® like system. However, its kernel uses the same
system-call convention of passing parameters in registers
MS-DOS® does. As with the UNIX® convention,
the function number is placed in EAX.
The parameters, however, are not passed on the stack but in
EBX, ECX, EDX, ESI, EDI, EBP:

open:
	mov	eax, 5
	mov	ebx, path
	mov	ecx, flags
	mov	edx, mode
	int	80h

This convention has a great disadvantage over
the UNIX® way, at least as far as assembly language programming
is concerned: Every time you make a kernel call
you must push the registers, then
pop them later. This makes your code
bulkier and slower. Nevertheless, FreeBSD gives
you a choice.

If you do choose the Linux convention, you must let
the system know about it. After your program is assembled and
linked, you need to brand the executable:

% brandelf -f Linux filename
10.3.3. Which Convention Should You Use?

If you are coding specifically for FreeBSD, you should always
use the UNIX® convention: It is faster, you can store global
variables in registers, you do not have to brand
the executable, and you do not impose the installation of
the Linux emulation package on the target system.

If you want to create portable code that can also run
on Linux, you will probably still want to give the FreeBSD
users as efficient a code as possible. I will show you
how you can accomplish that after I have explained the basics.

10.3.4. Call Numbers

To tell the kernel which system service you are calling,
place its number in EAX. Of course, you need
to know what the number is.

10.3.4.1. The syscalls File

The numbers are listed in syscalls.
locate syscalls finds this file
in several different formats, all produced automatically
from syscalls.master.

You can find the master file for the default UNIX® calling
convention in
/usr/src/sys/kern/syscalls.master.
If you need to use the other convention implemented
in the Linux emulation mode, read
/usr/src/sys/i386/linux/syscalls.master.

注意:

Not only do FreeBSD and Linux use different calling
conventions, they sometimes use different numbers for
the same functions.

syscalls.master describes how
the call is to be made:

0	STD	NOHIDE	{ int nosys(void); } syscall nosys_args int
1	STD	NOHIDE	{ void exit(int rval); } exit rexit_args void
2	STD	POSIX	{ int fork(void); }
3	STD	POSIX	{ ssize_t read(int fd, void *buf, size_t nbyte); }
4	STD	POSIX	{ ssize_t write(int fd, const void *buf, size_t nbyte); }
5	STD	POSIX	{ int open(char *path, int flags, int mode); }
6	STD	POSIX	{ int close(int fd); }
etc...

It is the leftmost column that tells us the number to place in
EAX.

The rightmost column tells us what parameters to
push. They are pushed
from right to left.

For example, to open a file, we need
to push the mode first,
then flags, then the address at which
the path is stored.

10.4. Return Values

A system call would not be useful most of the time
if it did not return some kind of a value: The file
descriptor of an open file, the number of bytes read
to a buffer, the system time, etc.

Additionally, the system needs to inform us if an error
occurs: A file does not exist, system resources are exhausted,
we passed an invalid parameter, etc.

10.4.1. Man Pages

The traditional place to look for information about various
system calls under UNIX® systems are the manual pages.
FreeBSD describes its system calls in section 2, sometimes
in section 3.

For example, open(2) says:

If successful, open() returns a non-negative
integer, termed a file descriptor. It returns -1 on failure,
and sets errno to indicate the error.

The assembly language programmer new to UNIX® and FreeBSD will
immediately ask the puzzling question: Where is
errno and how do I get to it?

注意:

The information presented in the manual pages applies
to C programs. The assembly language programmer needs additional
information.

10.4.2. Where Are the Return Values?

Unfortunately, it depends... For most system calls it is
in EAX, but not for all.
A good rule of thumb,
when working with a system call for
the first time, is to look for
the return value in EAX.
If it is not there, you
need further research.

注意:

I am aware of one system call that returns the value in
EDX: SYS_fork. All others
I have worked with use EAX.
But I have not worked with them all yet.

提示:

If you cannot find the answer here or anywhere else,
study libc source code and see how it
interfaces with the kernel.

10.4.3. Where Is errno?

Actually, nowhere...

errno is part of the C language, not the
UNIX® kernel. When accessing kernel services directly, the
error code is returned in EAX,
the same register the proper
return value generally ends up in.

This makes perfect sense. If there is no error, there is
no error code. If there is an error, there is no return
value. One register can contain either.

10.4.4. Determining an Error Occurred

When using the standard FreeBSD calling convention,
the carry flag is cleared upon success,
set upon failure.

When using the Linux emulation mode, the signed
value in EAX is non-negative upon success,
and contains the return value. In case of an error, the value
is negative, i.e., -errno.

10.5. Creating Portable Code

Portability is generally not one of the strengths of assembly language.
Yet, writing assembly language programs for different platforms is
possible, especially with nasm. I have written
assembly language libraries that can be assembled for such different
operating systems as Windows® and FreeBSD.

It is all the more possible when you want your code to run
on two platforms which, while different, are based on
similar architectures.

For example, FreeBSD is UNIX®, Linux is UNIX® like. I only
mentioned three differences between them (from an assembly language
programmer's perspective): The calling convention, the
function numbers, and the way of returning values.

10.5.1. Dealing with Function Numbers

In many cases the function numbers are the same. However,
even when they are not, the problem is easy to deal with:
Instead of using numbers in your code, use constants which
you have declared differently depending on the target
architecture:

%ifdef	LINUX
%define	SYS_execve	11
%else
%define	SYS_execve	59
%endif

10.5.2. Dealing with Conventions

Both, the calling convention, and the return value (the
errno problem) can be resolved with macros:

%ifdef	LINUX

%macro	system	0
	call	kernel
%endmacro

align 4
kernel:
	push	ebx
	push	ecx
	push	edx
	push	esi
	push	edi
	push	ebp

	mov	ebx, [esp+32]
	mov	ecx, [esp+36]
	mov	edx, [esp+40]
	mov	esi, [esp+44]
	mov	ebp, [esp+48]
	int	80h

	pop	ebp
	pop	edi
	pop	esi
	pop	edx
	pop	ecx
	pop	ebx

	or	eax, eax
	js	.errno
	clc
	ret

.errno:
	neg	eax
	stc
	ret

%else

%macro	system	0
	int	80h
%endmacro

%endif

10.5.3. Dealing with Other Portability Issues

The above solutions can handle most cases of writing code
portable between FreeBSD and Linux. Nevertheless, with some
kernel services the differences are deeper.

In that case, you need to write two different handlers
for those particular system calls, and use conditional
assembly. Luckily, most of your code does something other
than calling the kernel, so usually you will only need
a few such conditional sections in your code.

10.5.4. Using a Library

You can avoid portability issues in your main code altogether
by writing a library of system calls. Create a separate library
for FreeBSD, a different one for Linux, and yet other libraries
for more operating systems.

In your library, write a separate function (or procedure, if
you prefer the traditional assembly language terminology) for each system
call. Use the C calling convention of passing parameters.
But still use EAX to pass the call number in.
In that case, your FreeBSD library can be very simple, as
many seemingly different functions can be just labels to
the same code:

sys.open:
sys.close:
[etc...]
	int	80h
	ret

Your Linux library will require more different functions.
But even here you can group system calls using the same
number of parameters:

sys.exit:
sys.close:
[etc... one-parameter functions]
	push	ebx
	mov	ebx, [esp+12]
	int	80h
	pop	ebx
	jmp	sys.return

...

sys.return:
	or	eax, eax
	js	sys.err
	clc
	ret

sys.err:
	neg	eax
	stc
	ret

The library approach may seem inconvenient at first because
it requires you to produce a separate file your code depends
on. But it has many advantages: For one, you only need to
write it once and can use it for all your programs. You can
even let other assembly language programmers use it, or perhaps use
one written by someone else. But perhaps the greatest
advantage of the library is that your code can be ported
to other systems, even by other programmers, by simply
writing a new library without any changes to your code.

If you do not like the idea of having a library, you can
at least place all your system calls in a separate assembly language file
and link it with your main program. Here, again, all porters
have to do is create a new object file to link with your
main program.

10.5.5. Using an Include File

If you are releasing your software as (or with)
source code, you can use macros and place them
in a separate file, which you include in your
code.

Porters of your software will simply write a new
include file. No library or external object file
is necessary, yet your code is portable without any
need to edit the code.

注意:

This is the approach we will use throughout this chapter.
We will name our include file system.inc, and
add to it whenever we deal with a new system call.

We can start our system.inc by declaring the
standard file descriptors:

%define	stdin	0
%define	stdout	1
%define	stderr	2

Next, we create a symbolic name for each system call:

%define	SYS_nosys	0
%define	SYS_exit	1
%define	SYS_fork	2
%define	SYS_read	3
%define	SYS_write	4
; [etc...]

We add a short, non-global procedure with a long name,
so we do not accidentally reuse the name in our code:

section	.text
align 4
access.the.bsd.kernel:
	int	80h
	ret

We create a macro which takes one argument, the syscall number:

%macro	system	1
	mov	eax, %1
	call	access.the.bsd.kernel
%endmacro

Finally, we create macros for each syscall. These macros take
no arguments.

%macro	sys.exit	0
	system	SYS_exit
%endmacro

%macro	sys.fork	0
	system	SYS_fork
%endmacro

%macro	sys.read	0
	system	SYS_read
%endmacro

%macro	sys.write	0
	system	SYS_write
%endmacro

; [etc...]

Go ahead, enter it into your editor and save it as
system.inc. We will add more to it as we
discuss more syscalls.

10.6. Our First Program

We are now ready for our first program, the mandatory
Hello, World!

 1:	%include	'system.inc'
 2:
 3:	section	.data
 4:	hello	db	'Hello, World!', 0Ah
 5:	hbytes	equ	$-hello
 6:
 7:	section	.text
 8:	global	_start
 9:	_start:
10:	push	dword hbytes
11:	push	dword hello
12:	push	dword stdout
13:	sys.write
14:
15:	push	dword 0
16:	sys.exit

Here is what it does: Line 1 includes the defines, the macros,
and the code from system.inc.

Lines 3-5 are the data: Line 3 starts the data section/segment.
Line 4 contains the string "Hello, World!" followed by a new
line (0Ah). Line 5 creates a constant that contains
the length of the string from line 4 in bytes.

Lines 7-16 contain the code. Note that FreeBSD uses the elf
file format for its executables, which requires every
program to start at the point labeled _start (or, more
precisely, the linker expects that). This label has to be
global.

Lines 10-13 ask the system to write hbytes bytes
of the hello string to stdout.

Lines 15-16 ask the system to end the program with the return
value of 0. The SYS_exit syscall never
returns, so the code ends there.

注意:

If you have come to UNIX® from MS-DOS®
assembly language background, you may be used to writing directly
to the video hardware. You will never have to worry about
this in FreeBSD, or any other flavor of UNIX®. As far as
you are concerned, you are writing to a file known as
stdout. This can be the video screen, or
a telnet terminal, or an actual file,
or even the input of another program. Which one it is,
is for the system to figure out.

10.6.1. Assembling the Code

Type the code (except the line numbers) in an editor, and save
it in a file named hello.asm. You need
nasm to assemble it.

10.6.1.1. Installing nasm

If you do not have nasm, type:

% su
Password:your root password
cd /usr/ports/devel/nasm
make install
exit
%

You may type make install clean instead of just
make install if you do not want to keep
nasm source code.

Either way, FreeBSD will automatically download
nasm from the Internet,
compile it, and install it on your system.

注意:

If your system is not FreeBSD, you need to get
nasm from its
home
page. You can still use it to assemble FreeBSD code.

Now you can assemble, link, and run the code:

% nasm -f elf hello.asm
% ld -s -o hello hello.o
% ./hello
Hello, World!
%
10.7. Writing UNIX® Filters

A common type of UNIX® application is a filter——a program
that reads data from the stdin, processes it
somehow, then writes the result to stdout.

In this chapter, we shall develop a simple filter, and
learn how to read from stdin and write to
stdout. This filter will convert each byte
of its input into a hexadecimal number followed by a
blank space.

%include	'system.inc'

section	.data
hex	db	'0123456789ABCDEF'
buffer	db	0, 0, ' '

section	.text
global	_start
_start:
	; read a byte from stdin
	push	dword 1
	push	dword buffer
	push	dword stdin
	sys.read
	add	esp, byte 12
	or	eax, eax
	je	.done

	; convert it to hex
	movzx	eax, byte [buffer]
	mov	edx, eax
	shr	dl, 4
	mov	dl, [hex+edx]
	mov	[buffer], dl
	and	al, 0Fh
	mov	al, [hex+eax]
	mov	[buffer+1], al

	; print it
	push	dword 3
	push	dword buffer
	push	dword stdout
	sys.write
	add	esp, byte 12
	jmp	short _start

.done:
	push	dword 0
	sys.exit

In the data section we create an array called hex.
It contains the 16 hexadecimal digits in ascending order.
The array is followed by a buffer which we will use for
both input and output. The first two bytes of the buffer
are initially set to 0. This is where we will write
the two hexadecimal digits (the first byte also is
where we will read the input). The third byte is a
space.

The code section consists of four parts: Reading the byte,
converting it to a hexadecimal number, writing the result,
and eventually exiting the program.

To read the byte, we ask the system to read one byte
from stdin, and store it in the first byte
of the buffer. The system returns the number
of bytes read in EAX. This will be 1
while data is coming, or 0, when no more input
data is available. Therefore, we check the value of
EAX. If it is 0,
we jump to .done, otherwise we continue.

注意:

For simplicity sake, we are ignoring the possibility
of an error condition at this time.

The hexadecimal conversion reads the byte from the
buffer into EAX, or actually just
AL, while clearing the remaining bits of
EAX to zeros. We also copy the byte to
EDX because we need to convert the upper
four bits (nibble) separately from the lower
four bits. We store the result in the first two
bytes of the buffer.

Next, we ask the system to write the three bytes
of the buffer, i.e., the two hexadecimal digits and
the blank space, to stdout. We then
jump back to the beginning of the program and
process the next byte.

Once there is no more input left, we ask the system
to exit our program, returning a zero, which is
the traditional value meaning the program was
successful.

Go ahead, and save the code in a file named hex.asm,
then type the following (the ^D means press the
control key and type D while holding the
control key down):

% nasm -f elf hex.asm
% ld -s -o hex hex.o
% ./hex
Hello, World!
48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 21 0A Here I come!
48 65 72 65 20 49 20 63 6F 6D 65 21 0A ^D %
注意:

If you are migrating to UNIX® from MS-DOS®,
you may be wondering why each line ends with 0A
instead of 0D 0A.
This is because UNIX® does not use the cr/lf convention, but
a "new line" convention, which is 0A in hexadecimal.

Can we improve this? Well, for one, it is a bit confusing because
once we have converted a line of text, our input no longer
starts at the beginning of the line. We can modify it to print
a new line instead of a space after each 0A:

%include	'system.inc'

section	.data
hex	db	'0123456789ABCDEF'
buffer	db	0, 0, ' '

section	.text
global	_start
_start:
	mov	cl, ' '

.loop:
	; read a byte from stdin
	push	dword 1
	push	dword buffer
	push	dword stdin
	sys.read
	add	esp, byte 12
	or	eax, eax
	je	.done

	; convert it to hex
	movzx	eax, byte [buffer]
	mov	[buffer+2], cl
	cmp	al, 0Ah
	jne	.hex
	mov	[buffer+2], al

.hex:
	mov	edx, eax
	shr	dl, 4
	mov	dl, [hex+edx]
	mov	[buffer], dl
	and	al, 0Fh
	mov	al, [hex+eax]
	mov	[buffer+1], al

	; print it
	push	dword 3
	push	dword buffer
	push	dword stdout
	sys.write
	add	esp, byte 12
	jmp	short .loop

.done:
	push	dword 0
	sys.exit

We have stored the space in the CL register. We can
do this safely because, unlike Microsoft® Windows®, UNIX® system
calls do not modify the value of any register they do not use
to return a value in.

That means we only need to set CL once. We have, therefore,
added a new label .loop and jump to it for the next byte
instead of jumping at _start. We have also added the
.hex label so we can either have a blank space or a
new line as the third byte of the buffer.

Once you have changed hex.asm to reflect
these changes, type:

% nasm -f elf hex.asm
% ld -s -o hex hex.o
% ./hex
Hello, World!
48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 21 0A
Here I come!
48 65 72 65 20 49 20 63 6F 6D 65 21 0A
^D %

That looks better. But this code is quite inefficient! We
are making a system call for every single byte twice (once
to read it, another time to write the output).

10.8. Buffered Input and Output

We can improve the efficiency of our code by buffering our
input and output. We create an input buffer and read a whole
sequence of bytes at one time. Then we fetch them one by one
from the buffer.

We also create an output buffer. We store our output in it until
it is full. At that time we ask the kernel to write the contents
of the buffer to stdout.

The program ends when there is no more input. But we still need
to ask the kernel to write the contents of our output buffer
to stdout one last time, otherwise some of our output
would make it to the output buffer, but never be sent out.
Do not forget that, or you will be wondering why some of your
output is missing.

%include	'system.inc'

%define	BUFSIZE	2048

section	.data
hex	db	'0123456789ABCDEF'

section .bss
ibuffer	resb	BUFSIZE
obuffer	resb	BUFSIZE

section	.text
global	_start
_start:
	sub	eax, eax
	sub	ebx, ebx
	sub	ecx, ecx
	mov	edi, obuffer

.loop:
	; read a byte from stdin
	call	getchar

	; convert it to hex
	mov	dl, al
	shr	al, 4
	mov	al, [hex+eax]
	call	putchar

	mov	al, dl
	and	al, 0Fh
	mov	al, [hex+eax]
	call	putchar

	mov	al, ' '
	cmp	dl, 0Ah
	jne	.put
	mov	al, dl

.put:
	call	putchar
	jmp	short .loop

align 4
getchar:
	or	ebx, ebx
	jne	.fetch

	call	read

.fetch:
	lodsb
	dec	ebx
	ret

read:
	push	dword BUFSIZE
	mov	esi, ibuffer
	push	esi
	push	dword stdin
	sys.read
	add	esp, byte 12
	mov	ebx, eax
	or	eax, eax
	je	.done
	sub	eax, eax
	ret

align 4
.done:
	call	write		; flush output buffer
	push	dword 0
	sys.exit

align 4
putchar:
	stosb
	inc	ecx
	cmp	ecx, BUFSIZE
	je	write
	ret

align 4
write:
	sub	edi, ecx	; start of buffer
	push	ecx
	push	edi
	push	dword stdout
	sys.write
	add	esp, byte 12
	sub	eax, eax
	sub	ecx, ecx	; buffer is empty now
	ret

We now have a third section in the source code, named
.bss. This section is not included in our
executable file, and, therefore, cannot be initialized. We use
resb instead of db.
It simply reserves the requested size of uninitialized memory
for our use.

We take advantage of the fact that the system does not modify the
registers: We use registers for what, otherwise, would have to be
global variables stored in the .data section. This is
also why the UNIX® convention of passing parameters to system calls
on the stack is superior to the Microsoft convention of passing
them in the registers: We can keep the registers for our own use.

We use EDI and ESI as pointers to the next byte
to be read from or written to. We use EBX and
ECX to keep count of the number of bytes in the
two buffers, so we know when to dump the output to, or read more
input from, the system.

Let us see how it works now:

% nasm -f elf hex.asm
% ld -s -o hex hex.o
% ./hex
Hello, World!
Here I come!
48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 21 0A
48 65 72 65 20 49 20 63 6F 6D 65 21 0A
^D %

Not what you expected? The program did not print the output
until we pressed ^D. That is easy to fix by
inserting three lines of code to write the output every time
we have converted a new line to 0A. I have marked
the three lines with > (do not copy the > in your
hex.asm).

%include	'system.inc'

%define	BUFSIZE	2048

section	.data
hex	db	'0123456789ABCDEF'

section .bss
ibuffer	resb	BUFSIZE
obuffer	resb	BUFSIZE

section	.text
global	_start
_start:
	sub	eax, eax
	sub	ebx, ebx
	sub	ecx, ecx
	mov	edi, obuffer

.loop:
	; read a byte from stdin
	call	getchar

	; convert it to hex
	mov	dl, al
	shr	al, 4
	mov	al, [hex+eax]
	call	putchar

	mov	al, dl
	and	al, 0Fh
	mov	al, [hex+eax]
	call	putchar

	mov	al, ' '
	cmp	dl, 0Ah
	jne	.put
	mov	al, dl

.put:
	call	putchar
>	cmp	al, 0Ah
>	jne	.loop
>	call	write
	jmp	short .loop

align 4
getchar:
	or	ebx, ebx
	jne	.fetch

	call	read

.fetch:
	lodsb
	dec	ebx
	ret

read:
	push	dword BUFSIZE
	mov	esi, ibuffer
	push	esi
	push	dword stdin
	sys.read
	add	esp, byte 12
	mov	ebx, eax
	or	eax, eax
	je	.done
	sub	eax, eax
	ret

align 4
.done:
	call	write		; flush output buffer
	push	dword 0
	sys.exit

align 4
putchar:
	stosb
	inc	ecx
	cmp	ecx, BUFSIZE
	je	write
	ret

align 4
write:
	sub	edi, ecx	; start of buffer
	push	ecx
	push	edi
	push	dword stdout
	sys.write
	add	esp, byte 12
	sub	eax, eax
	sub	ecx, ecx	; buffer is empty now
	ret

Now, let us see how it works:

% nasm -f elf hex.asm
% ld -s -o hex hex.o
% ./hex
Hello, World!
48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 21 0A
Here I come!
48 65 72 65 20 49 20 63 6F 6D 65 21 0A
^D %

Not bad for a 644-byte executable, is it!

注意:

This approach to buffered input/output still
contains a hidden danger. I will discuss——and
fix——it later, when I talk about the
dark
side of buffering.

10.8.1. How to Unread a Character
警告:

This may be a somewhat advanced topic, mostly of interest to
programmers familiar with the theory of compilers. If you wish,
you may skip to the next
section, and perhaps read this later.

While our sample program does not require it, more sophisticated
filters often need to look ahead. In other words, they may need
to see what the next character is (or even several characters).
If the next character is of a certain value, it is part of the
token currently being processed. Otherwise, it is not.

For example, you may be parsing the input stream for a textual
string (e.g., when implementing a language compiler): If a
character is followed by another character, or perhaps a digit,
it is part of the token you are processing. If it is followed by
white space, or some other value, then it is not part of the
current token.

This presents an interesting problem: How to return the next
character back to the input stream, so it can be read again
later?

One possible solution is to store it in a character variable,
then set a flag. We can modify getchar to check the flag,
and if it is set, fetch the byte from that variable instead of the
input buffer, and reset the flag. But, of course, that slows us
down.

The C language has an ungetc() function, just for that
purpose. Is there a quick way to implement it in our code?
I would like you to scroll back up and take a look at the
getchar procedure and see if you can find a nice and
fast solution before reading the next paragraph. Then come back
here and see my own solution.

The key to returning a character back to the stream is in how
we are getting the characters to start with:

First we check if the buffer is empty by testing the value
of EBX. If it is zero, we call the
read procedure.

If we do have a character available, we use lodsb, then
decrease the value of EBX. The lodsb
instruction is effectively identical to:

	mov	al, [esi]
	inc	esi

The byte we have fetched remains in the buffer until the next
time read is called. We do not know when that happens,
but we do know it will not happen until the next call to
getchar. Hence, to "return" the last-read byte back
to the stream, all we have to do is decrease the value of
ESI and increase the value of EBX:

ungetc:
	dec	esi
	inc	ebx
	ret

But, be careful! We are perfectly safe doing this if our look-ahead
is at most one character at a time. If we are examining more than
one upcoming character and call ungetc several times
in a row, it will work most of the time, but not all the time
(and will be tough to debug). Why?

Because as long as getchar does not have to call
read, all of the pre-read bytes are still in the buffer,
and our ungetc works without a glitch. But the moment
getchar calls read,
the contents of the buffer change.

We can always rely on ungetc working properly on the last
character we have read with getchar, but not on anything
we have read before that.

If your program reads more than one byte ahead, you have at least
two choices:

If possible, modify the program so it only reads one byte ahead.
This is the simplest solution.

If that option is not available, first of all determine the maximum
number of characters your program needs to return to the input
stream at one time. Increase that number slightly, just to be
sure, preferably to a multiple of 16——so it aligns nicely.
Then modify the .bss section of your code, and create
a small "spare" buffer right before your input buffer,
something like this:

section	.bss
	resb	16	; or whatever the value you came up with
ibuffer	resb	BUFSIZE
obuffer	resb	BUFSIZE

You also need to modify your ungetc to pass the value
of the byte to unget in AL:

ungetc:
	dec	esi
	inc	ebx
	mov	[esi], al
	ret

With this modification, you can call ungetc
up to 17 times in a row safely (the first call will still
be within the buffer, the remaining 16 may be either within
the buffer or within the "spare").

10.9. Command Line Arguments

Our hex program will be more useful if it can
read the names of an input and output file from its command
line, i.e., if it can process the command line arguments.
But... Where are they?

Before a UNIX® system starts a program, it pushes some
data on the stack, then jumps at the _start
label of the program. Yes, I said jumps, not calls. That means the
data can be accessed by reading [esp+offset],
or by simply popping it.

The value at the top of the stack contains the number of
command line arguments. It is traditionally called
argc, for "argument count."

Command line arguments follow next, all argc of them.
These are typically referred to as argv, for
"argument value(s)." That is, we get argv[0],
argv[1], ...,
argv[argc-1]. These are not the actual
arguments, but pointers to arguments, i.e., memory addresses of
the actual arguments. The arguments themselves are
NUL-terminated character strings.

The argv list is followed by a NULL pointer,
which is simply a 0. There is more, but this is
enough for our purposes right now.

注意:

If you have come from the MS-DOS® programming
environment, the main difference is that each argument is in
a separate string. The second difference is that there is no
practical limit on how many arguments there can be.

Armed with this knowledge, we are almost ready for the next
version of hex.asm. First, however, we need to
add a few lines to system.inc:

First, we need to add two new entries to our list of system
call numbers:

%define	SYS_open	5
%define	SYS_close	6

Then we add two new macros at the end of the file:

%macro	sys.open	0
	system	SYS_open
%endmacro

%macro	sys.close	0
	system	SYS_close
%endmacro

Here, then, is our modified source code:

%include	'system.inc'

%define	BUFSIZE	2048

section	.data
fd.in	dd	stdin
fd.out	dd	stdout
hex	db	'0123456789ABCDEF'

section .bss
ibuffer	resb	BUFSIZE
obuffer	resb	BUFSIZE

section	.text
align 4
err:
	push	dword 1		; return failure
	sys.exit

align 4
global	_start
_start:
	add	esp, byte 8	; discard argc and argv[0]

	pop	ecx
	jecxz	.init		; no more arguments

	; ECX contains the path to input file
	push	dword 0		; O_RDONLY
	push	ecx
	sys.open
	jc	err		; open failed

	add	esp, byte 8
	mov	[fd.in], eax

	pop	ecx
	jecxz	.init		; no more arguments

	; ECX contains the path to output file
	push	dword 420	; file mode (644 octal)
	push	dword 0200h | 0400h | 01h
	; O_CREAT | O_TRUNC | O_WRONLY
	push	ecx
	sys.open
	jc	err

	add	esp, byte 12
	mov	[fd.out], eax

.init:
	sub	eax, eax
	sub	ebx, ebx
	sub	ecx, ecx
	mov	edi, obuffer

.loop:
	; read a byte from input file or stdin
	call	getchar

	; convert it to hex
	mov	dl, al
	shr	al, 4
	mov	al, [hex+eax]
	call	putchar

	mov	al, dl
	and	al, 0Fh
	mov	al, [hex+eax]
	call	putchar

	mov	al, ' '
	cmp	dl, 0Ah
	jne	.put
	mov	al, dl

.put:
	call	putchar
	cmp	al, dl
	jne	.loop
	call	write
	jmp	short .loop

align 4
getchar:
	or	ebx, ebx
	jne	.fetch

	call	read

.fetch:
	lodsb
	dec	ebx
	ret

read:
	push	dword BUFSIZE
	mov	esi, ibuffer
	push	esi
	push	dword [fd.in]
	sys.read
	add	esp, byte 12
	mov	ebx, eax
	or	eax, eax
	je	.done
	sub	eax, eax
	ret

align 4
.done:
	call	write		; flush output buffer

	; close files
	push	dword [fd.in]
	sys.close

	push	dword [fd.out]
	sys.close

	; return success
	push	dword 0
	sys.exit

align 4
putchar:
	stosb
	inc	ecx
	cmp	ecx, BUFSIZE
	je	write
	ret

align 4
write:
	sub	edi, ecx	; start of buffer
	push	ecx
	push	edi
	push	dword [fd.out]
	sys.write
	add	esp, byte 12
	sub	eax, eax
	sub	ecx, ecx	; buffer is empty now
	ret

In our .data section we now have two new variables,
fd.in and fd.out. We store the input and
output file descriptors here.

In the .text section we have replaced the references
to stdin and stdout with
[fd.in] and [fd.out].

The .text section now starts with a simple error
handler, which does nothing but exit the program with a return
value of 1.
The error handler is before _start so we are
within a short distance from where the errors occur.

Naturally, the program execution still begins at _start.
First, we remove argc and argv[0] from the
stack: They are of no interest to us (in this program, that is).

We pop argv[1] to ECX. This
register is particularly suited for pointers, as we can handle
NULL pointers with jecxz. If argv[1]
is not NULL, we try to open the file named in the first
argument. Otherwise, we continue the program as before: Reading
from stdin, writing to stdout.
If we fail to open the input file (e.g., it does not exist),
we jump to the error handler and quit.

If all went well, we now check for the second argument. If
it is there, we open the output file. Otherwise, we send
the output to stdout. If we fail to open the output
file (e.g., it exists and we do not have the write permission),
we, again, jump to the error handler.

The rest of the code is the same as before, except we close
the input and output files before exiting, and, as mentioned,
we use [fd.in] and [fd.out].

Our executable is now a whopping 768 bytes long.

Can we still improve it? Of course! Every program can be improved.
Here are a few ideas of what we could do:

	
Have our error handler print a message to
stderr.

	
Add error handlers to the read
and write functions.

	
Close stdin when we open an input file,
stdout when we open an output file.

	
Add command line switches, such as -i
and -o, so we can list the input and
output files in any order, or perhaps read from
stdin and write to a file.

	
Print a usage message if command line arguments are incorrect.

I shall leave these enhancements as an exercise to the reader:
You already know everything you need to know to implement them.

10.10. UNIX® Environment

An important UNIX® concept is the environment, which is defined by
environment variables. Some are set by the system, others
by you, yet others by the shell, or any program
that loads another program.

10.10.1. How to Find Environment Variables

I said earlier that when a program starts executing, the stack
contains argc followed by the NULL-terminated
argv array, followed by something else. The
"something else" is the environment, or,
to be more precise, a NULL-terminated array of pointers to
environment variables. This is often referred
to as env.

The structure of env is the same as that of
argv, a list of memory addresses followed by a
NULL (0). In this case, there is no
"envc"——we figure out where the array ends
by searching for the final NULL.

The variables usually come in the name=value
format, but sometimes the =value part
may be missing. We need to account for that possibility.

10.10.2. webvars

I could just show you some code that prints the environment
the same way the UNIX® env command does. But
I thought it would be more interesting to write a simple
assembly language CGI utility.

10.10.2.1. CGI: A Quick Overview

I have a
detailed
CGI tutorial on my web site,
but here is a very quick overview of CGI:

	
The web server communicates with the CGI
program by setting environment variables.

	
The CGI program
sends its output to stdout.
The web server reads it from there.

	
It must start with an HTTP
header followed by two blank lines.

	
It then prints the HTML
code, or whatever other type of data it is producing.

注意:

While certain environment variables use
standard names, others vary, depending on the web server. That
makes webvars
quite a useful diagnostic tool.

10.10.2.2. The Code

Our webvars program, then, must send out
the HTTP header followed by some
HTML mark-up. It then must read
the environment variables one by one
and send them out as part of the
HTML page.

The code follows. I placed comments and explanations
right inside the code:

;;;;;;; webvars.asm ;;;
;
; Copyright (c) 2000 G. Adam Stanislav
; All rights reserved.
;
; Redistribution and use in source and binary forms, with or without
; modification, are permitted provided that the following conditions
; are met:
; 1. Redistributions of source code must retain the above copyright
; notice, this list of conditions and the following disclaimer.
; 2. Redistributions in binary form must reproduce the above copyright
; notice, this list of conditions and the following disclaimer in the
; documentation and/or other materials provided with the distribution.
;
; THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
; ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
; ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
; FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
; DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
; OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
; HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
; LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
; OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
; SUCH DAMAGE.
;;;
;
; Version 1.0
;
; Started:	 8-Dec-2000
; Updated:	 8-Dec-2000
;
;;;
%include	'system.inc'

section	.data
http	db	'Content-type: text/html', 0Ah, 0Ah
	db	'<?xml version="1.0" encoding="utf-8"?>', 0Ah
	db	'<!DOCTYPE html PUBLIC "-//W3C/DTD XHTML Strict//EN" '
	db	'"DTD/xhtml1-strict.dtd">', 0Ah
	db	'<html xmlns="http://www.w3.org/1999/xhtml" '
	db	'xml.lang="en" lang="en">', 0Ah
	db	'<head>', 0Ah
	db	'<title>Web Environment</title>', 0Ah
	db	'<meta name="author" content="G. Adam Stanislav" />', 0Ah
	db	'</head>', 0Ah, 0Ah
	db	'<body bgcolor="#ffffff" text="#000000" link="#0000ff" '
	db	'vlink="#840084" alink="#0000ff">', 0Ah
	db	'<div class="webvars">', 0Ah
	db	'<h1>Web Environment</h1>', 0Ah
	db	'<p>The following environment variables are defined '
	db	'on this web server:</p>', 0Ah, 0Ah
	db	'<table align="center" width="80" border="0" cellpadding="10" '
	db	'cellspacing="0" class="webvars">', 0Ah
httplen	equ	$-http
left	db	'<tr>', 0Ah
	db	'<td class="name"><tt>'
leftlen	equ	$-left
middle	db	'</tt></td>', 0Ah
	db	'<td class="value"><tt>'
midlen	equ	$-middle
undef	db	'<i>(undefined)</i>'
undeflen	equ	$-undef
right	db	'</tt></td>', 0Ah
	db	'</tr>', 0Ah
rightlen	equ	$-right
wrap	db	'</table>', 0Ah
	db	'</div>', 0Ah
	db	'</body>', 0Ah
	db	'</html>', 0Ah, 0Ah
wraplen	equ	$-wrap

section	.text
global	_start
_start:
	; First, send out all the http and xhtml stuff that is
	; needed before we start showing the environment
	push	dword httplen
	push	dword http
	push	dword stdout
	sys.write

	; Now find how far on the stack the environment pointers
	; are. We have 12 bytes we have pushed before "argc"
	mov	eax, [esp+12]

	; We need to remove the following from the stack:
	;
	;	The 12 bytes we pushed for sys.write
	;	The 4 bytes of argc
	;	The EAX*4 bytes of argv
	;	The 4 bytes of the NULL after argv
	;
	; Total:
	;	20 + eax * 4
	;
	; Because stack grows down, we need to ADD that many bytes
	; to ESP.
	lea	esp, [esp+20+eax*4]
	cld		; This should already be the case, but let's be sure.

	; Loop through the environment, printing it out
.loop:
	pop	edi
	or	edi, edi	; Done yet?
	je	near .wrap

	; Print the left part of HTML
	push	dword leftlen
	push	dword left
	push	dword stdout
	sys.write

	; It may be tempting to search for the '=' in the env string next.
	; But it is possible there is no '=', so we search for the
	; terminating NUL first.
	mov	esi, edi	; Save start of string
	sub	ecx, ecx
	not	ecx		; ECX = FFFFFFFF
	sub	eax, eax
repne	scasb
	not	ecx		; ECX = string length + 1
	mov	ebx, ecx	; Save it in EBX

	; Now is the time to find '='
	mov	edi, esi	; Start of string
	mov	al, '='
repne	scasb
	not	ecx
	add	ecx, ebx	; Length of name

	push	ecx
	push	esi
	push	dword stdout
	sys.write

	; Print the middle part of HTML table code
	push	dword midlen
	push	dword middle
	push	dword stdout
	sys.write

	; Find the length of the value
	not	ecx
	lea	ebx, [ebx+ecx-1]

	; Print "undefined" if 0
	or	ebx, ebx
	jne	.value

	mov	ebx, undeflen
	mov	edi, undef

.value:
	push	ebx
	push	edi
	push	dword stdout
	sys.write

	; Print the right part of the table row
	push	dword rightlen
	push	dword right
	push	dword stdout
	sys.write

	; Get rid of the 60 bytes we have pushed
	add	esp, byte 60

	; Get the next variable
	jmp	.loop

.wrap:
	; Print the rest of HTML
	push	dword wraplen
	push	dword wrap
	push	dword stdout
	sys.write

	; Return success
	push	dword 0
	sys.exit

This code produces a 1,396-byte executable. Most of it is data,
i.e., the HTML mark-up we need to send out.

Assemble and link it as usual:

% nasm -f elf webvars.asm
% ld -s -o webvars webvars.o

To use it, you need to upload webvars to your
web server. Depending on how your web server is set up, you
may have to store it in a special cgi-bin directory,
or perhaps rename it with a .cgi extension.

Then you need to use your browser to view its output.
To see its output on my web server, please go to
http://www.int80h.org/webvars/.
If curious about the additional environment variables
present in a password protected web directory, go to
http://www.int80h.org/private/,
using the name asm and password
programmer.

10.11. Working with Files

We have already done some basic file work: We know how
to open and close them, how to read and write them using
buffers. But UNIX® offers much more functionality when it
comes to files. We will examine some of it in this section,
and end up with a nice file conversion utility.

Indeed, let us start at the end, that is, with the file
conversion utility. It always makes programming easier
when we know from the start what the end product is
supposed to do.

One of the first programs I wrote for UNIX® was
tuc,
a text-to-UNIX® file converter. It converts a text
file from other operating systems to a UNIX® text file.
In other words, it changes from different kind of line endings
to the newline convention of UNIX®. It saves the output
in a different file. Optionally, it converts a UNIX® text
file to a DOS text file.

I have used tuc extensively, but always
only to convert from some other OS
to UNIX®, never the other way. I have always wished
it would just overwrite the file instead of me having
to send the output to a different file. Most of the time,
I end up using it like this:

% tuc myfile tempfile
% mv tempfile myfile

It would be nice to have a ftuc,
i.e., fast tuc, and use it like this:

% ftuc myfile

In this chapter, then, we will write
ftuc in assembly language
(the original tuc
is in C), and study various
file-oriented kernel services in the process.

At first sight, such a file conversion is very
simple: All you have to do is strip the carriage
returns, right?

If you answered yes, think again: That approach will
work most of the time (at least with MS
DOS text files), but will fail occasionally.

The problem is that not all non UNIX® text files end their
line with the carriage return / line feed sequence. Some
use carriage returns without line feeds. Others combine several
blank lines into a single carriage return followed by several
line feeds. And so on.

A text file converter, then, must be able to handle
any possible line endings:

	
carriage return / line feed

	
carriage return

	
line feed / carriage return

	
line feed

It should also handle files that use some kind of a
combination of the above (e.g., carriage return followed
by several line feeds).

10.11.1. Finite State Machine

The problem is easily solved by the use of a technique
called finite state machine, originally developed
by the designers of digital electronic circuits. A
finite state machine is a digital circuit
whose output is dependent not only on its input but on
its previous input, i.e., on its state. The microprocessor
is an example of a finite state machine: Our
assembly language code is assembled to machine language in which
some assembly language code produces a single byte
of machine language, while others produce several bytes.
As the microprocessor fetches the bytes from the memory
one by one, some of them simply change its state rather than
produce some output. When all the bytes of the op code are
fetched, the microprocessor produces some output, or changes
the value of a register, etc.

Because of that, all software is essentially a sequence of state
instructions for the microprocessor. Nevertheless, the concept
of finite state machine is useful in software design as well.

Our text file converter can be designed as a finite state machine with three
possible states. We could call them states 0-2,
but it will make our life easier if we give them symbolic names:

	
ordinary

	
cr

	
lf

Our program will start in the ordinary
state. During this state, the program action depends on
its input as follows:

	
If the input is anything other than a carriage return
or line feed, the input is simply passed on to the output. The
state remains unchanged.

	
If the input is a carriage return, the state is changed
to cr. The input is then discarded, i.e.,
no output is made.

	
If the input is a line feed, the state is changed to
lf. The input is then discarded.

Whenever we are in the cr state, it is
because the last input was a carriage return, which was
unprocessed. What our software does in this state again
depends on the current input:

	
If the input is anything other than a carriage return
or line feed, output a line feed, then output the input, then
change the state to ordinary.

	
If the input is a carriage return, we have received
two (or more) carriage returns in a row. We discard the
input, we output a line feed, and leave the state unchanged.

	
If the input is a line feed, we output the line feed
and change the state to ordinary. Note that
this is not the same as the first case above – if we tried
to combine them, we would be outputting two line feeds
instead of one.

Finally, we are in the lf state after
we have received a line feed that was not preceded by a
carriage return. This will happen when our file already is
in UNIX® format, or whenever several lines in a row are
expressed by a single carriage return followed by several
line feeds, or when line ends with a line feed /
carriage return sequence. Here is how we need to handle
our input in this state:

	
If the input is anything other than a carriage return or
line feed, we output a line feed, then output the input, then
change the state to ordinary. This is exactly
the same action as in the cr state upon
receiving the same kind of input.

	
If the input is a carriage return, we discard the input,
we output a line feed, then change the state to ordinary.

	
If the input is a line feed, we output the line feed,
and leave the state unchanged.

10.11.1.1. The Final State

The above finite state machine works for the entire file, but leaves
the possibility that the final line end will be ignored. That will
happen whenever the file ends with a single carriage return or
a single line feed. I did not think of it when I wrote
tuc, just to discover that
occasionally it strips the last line ending.

This problem is easily fixed by checking the state after the
entire file was processed. If the state is not
ordinary, we simply
need to output one last line feed.

注意:

Now that we have expressed our algorithm as a finite state machine,
we could easily design a dedicated digital electronic
circuit (a "chip") to do the conversion for us. Of course,
doing so would be considerably more expensive than writing
an assembly language program.

10.11.1.2. The Output Counter

Because our file conversion program may be combining two
characters into one, we need to use an output counter. We
initialize it to 0, and increase it
every time we send a character to the output. At the end of
the program, the counter will tell us what size we need
to set the file to.

10.11.2. Implementing FSM in Software

The hardest part of working with a finite state machine
is analyzing the problem and expressing it as a
finite state machine. That accomplished,
the software almost writes itself.

In a high-level language, such as C, there are several main
approaches. One is to use a switch statement
which chooses what function should be run. For example,

	switch (state) {
	default:
	case REGULAR:
		regular(inputchar);
		break;
	case CR:
		cr(inputchar);
		break;
	case LF:
		lf(inputchar);
		break;
	}

Another approach is by using an array of function pointers,
something like this:

	(output[state])(inputchar);

Yet another is to have state be a
function pointer, set to point at the appropriate function:

	(*state)(inputchar);

This is the approach we will use in our program because it is very easy to do in assembly language, and very fast, too. We will simply keep the address of the right procedure in EBX, and then just issue:

	call	ebx

This is possibly faster than hardcoding the address in the code
because the microprocessor does not have to fetch the address from
the memory——it is already stored in one of its registers. I said
possibly because with the caching modern
microprocessors do, either way may be equally fast.

10.11.3. Memory Mapped Files

Because our program works on a single file, we cannot use the
approach that worked for us before, i.e., to read from an input
file and to write to an output file.

UNIX® allows us to map a file, or a section of a file,
into memory. To do that, we first need to open the file with the
appropriate read/write flags. Then we use the mmap
system call to map it into the memory. One nice thing about
mmap is that it automatically works with
virtual memory: We can map more of the file into the memory than
we have physical memory available, yet still access it through
regular memory op codes, such as mov,
lods, and stos.
Whatever changes we make to the memory image of the file will be
written to the file by the system. We do not even have to keep
the file open: As long as it stays mapped, we can
read from it and write to it.

The 32-bit Intel microprocessors can access up to four
gigabytes of memory – physical or virtual. The FreeBSD system
allows us to use up to a half of it for file mapping.

For simplicity sake, in this tutorial we will only convert files
that can be mapped into the memory in their entirety. There are
probably not too many text files that exceed two gigabytes in size.
If our program encounters one, it will simply display a message
suggesting we use the original
tuc instead.

If you examine your copy of syscalls.master,
you will find two separate syscalls named mmap.
This is because of evolution of UNIX®: There was the traditional
BSD mmap,
syscall 71. That one was superseded by the POSIX® mmap,
syscall 197. The FreeBSD system supports both because
older programs were written by using the original BSD
version. But new software uses the POSIX® version,
which is what we will use.

The syscalls.master file lists
the POSIX® version like this:

197	STD	BSD	{ caddr_t mmap(caddr_t addr, size_t len, int prot, \
			 int flags, int fd, long pad, off_t pos); }

This differs slightly from what
mmap(2)
says. That is because
mmap(2)
describes the C version.

The difference is in the long pad argument, which is not present in the C version. However, the FreeBSD syscalls add a 32-bit pad after pushing a 64-bit argument. In this case, off_t is a 64-bit value.

When we are finished working with a memory-mapped file,
we unmap it with the munmap syscall:

提示:

For an in-depth treatment of mmap, see
W. Richard Stevens'
Unix
Network Programming, Volume 2, Chapter 12.

10.11.4. Determining File Size

Because we need to tell mmap how many bytes
of the file to map into the memory, and because we want to map
the entire file, we need to determine the size of the file.

We can use the fstat syscall to get all
the information about an open file that the system can give us.
That includes the file size.

Again, syscalls.master lists two versions
of fstat, a traditional one
(syscall 62), and a POSIX® one
(syscall 189). Naturally, we will use the
POSIX® version:

189	STD	POSIX	{ int fstat(int fd, struct stat *sb); }

This is a very straightforward call: We pass to it the address
of a stat structure and the descriptor
of an open file. It will fill out the contents of the
stat structure.

I do, however, have to say that I tried to declare the
stat structure in the
.bss section, and
fstat did not like it: It set the carry
flag indicating an error. After I changed the code to allocate
the structure on the stack, everything was working fine.

10.11.5. Changing the File Size

Because our program may combine carriage return / line feed
sequences into straight line feeds, our output may be smaller
than our input. However, since we are placing our output into
the same file we read the input from, we may have to change the
size of the file.

The ftruncate system call allows us to do
just that. Despite its somewhat misleading name, the
ftruncate system call can be used to both
truncate the file (make it smaller) and to grow it.

And yes, we will find two versions of ftruncate
in syscalls.master, an older one
(130), and a newer one (201). We will use
the newer one:

201	STD	BSD	{ int ftruncate(int fd, int pad, off_t length); }

Please note that this one contains a int pad again.

10.11.6. ftuc

We now know everything we need to write ftuc.
We start by adding some new lines in system.inc.
First, we define some constants and structures, somewhere at
or near the beginning of the file:

;;;;;;; open flags
%define	O_RDONLY	0
%define	O_WRONLY	1
%define	O_RDWR	2

;;;;;;; mmap flags
%define	PROT_NONE	0
%define	PROT_READ	1
%define	PROT_WRITE	2
%define	PROT_EXEC	4
;;
%define	MAP_SHARED	0001h
%define	MAP_PRIVATE	0002h

;;;;;;; stat structure
struc	stat
st_dev		resd	1	; = 0
st_ino		resd	1	; = 4
st_mode		resw	1	; = 8, size is 16 bits
st_nlink	resw	1	; = 10, ditto
st_uid		resd	1	; = 12
st_gid		resd	1	; = 16
st_rdev		resd	1	; = 20
st_atime	resd	1	; = 24
st_atimensec	resd	1	; = 28
st_mtime	resd	1	; = 32
st_mtimensec	resd	1	; = 36
st_ctime	resd	1	; = 40
st_ctimensec	resd	1	; = 44
st_size		resd	2	; = 48, size is 64 bits
st_blocks	resd	2	; = 56, ditto
st_blksize	resd	1	; = 64
st_flags	resd	1	; = 68
st_gen		resd	1	; = 72
st_lspare	resd	1	; = 76
st_qspare	resd	4	; = 80
endstruc

We define the new syscalls:

%define	SYS_mmap	197
%define	SYS_munmap	73
%define	SYS_fstat	189
%define	SYS_ftruncate	201

We add the macros for their use:

%macro	sys.mmap	0
	system	SYS_mmap
%endmacro

%macro	sys.munmap	0
	system	SYS_munmap
%endmacro

%macro	sys.ftruncate	0
	system	SYS_ftruncate
%endmacro

%macro	sys.fstat	0
	system	SYS_fstat
%endmacro

And here is our code:

;;;;;;; Fast Text-to-Unix Conversion (ftuc.asm) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Started:	21-Dec-2000
;; Updated:	22-Dec-2000
;;
;; Copyright 2000 G. Adam Stanislav.
;; All rights reserved.
;;
;;;;;;; v.1 ;;;
%include	'system.inc'

section	.data
	db	'Copyright 2000 G. Adam Stanislav.', 0Ah
	db	'All rights reserved.', 0Ah
usg	db	'Usage: ftuc filename', 0Ah
usglen	equ	$-usg
co	db	"ftuc: Can't open file.", 0Ah
colen	equ	$-co
fae	db	'ftuc: File access error.', 0Ah
faelen	equ	$-fae
ftl	db	'ftuc: File too long, use regular tuc instead.', 0Ah
ftllen	equ	$-ftl
mae	db	'ftuc: Memory allocation error.', 0Ah
maelen	equ	$-mae

section	.text

align 4
memerr:
	push	dword maelen
	push	dword mae
	jmp	short error

align 4
toolong:
	push	dword ftllen
	push	dword ftl
	jmp	short error

align 4
facerr:
	push	dword faelen
	push	dword fae
	jmp	short error

align 4
cantopen:
	push	dword colen
	push	dword co
	jmp	short error

align 4
usage:
	push	dword usglen
	push	dword usg

error:
	push	dword stderr
	sys.write

	push	dword 1
	sys.exit

align 4
global	_start
_start:
	pop	eax		; argc
	pop	eax		; program name
	pop	ecx		; file to convert
	jecxz	usage

	pop	eax
	or	eax, eax	; Too many arguments?
	jne	usage

	; Open the file
	push	dword O_RDWR
	push	ecx
	sys.open
	jc	cantopen

	mov	ebp, eax	; Save fd

	sub	esp, byte stat_size
	mov	ebx, esp

	; Find file size
	push	ebx
	push	ebp		; fd
	sys.fstat
	jc	facerr

	mov	edx, [ebx + st_size + 4]

	; File is too long if EDX != 0 ...
	or	edx, edx
	jne	near toolong
	mov	ecx, [ebx + st_size]
	; ... or if it is above 2 GB
	or	ecx, ecx
	js	near toolong

	; Do nothing if the file is 0 bytes in size
	jecxz	.quit

	; Map the entire file in memory
	push	edx
	push	edx		; starting at offset 0
	push	edx		; pad
	push	ebp		; fd
	push	dword MAP_SHARED
	push	dword PROT_READ | PROT_WRITE
	push	ecx		; entire file size
	push	edx		; let system decide on the address
	sys.mmap
	jc	near memerr

	mov	edi, eax
	mov	esi, eax
	push	ecx		; for SYS_munmap
	push	edi

	; Use EBX for state machine
	mov	ebx, ordinary
	mov	ah, 0Ah
	cld

.loop:
	lodsb
	call	ebx
	loop	.loop

	cmp	ebx, ordinary
	je	.filesize

	; Output final lf
	mov	al, ah
	stosb
	inc	edx

.filesize:
	; truncate file to new size
	push	dword 0		; high dword
	push	edx		; low dword
	push	eax		; pad
	push	ebp
	sys.ftruncate

	; close it (ebp still pushed)
	sys.close

	add	esp, byte 16
	sys.munmap

.quit:
	push	dword 0
	sys.exit

align 4
ordinary:
	cmp	al, 0Dh
	je	.cr

	cmp	al, ah
	je	.lf

	stosb
	inc	edx
	ret

align 4
.cr:
	mov	ebx, cr
	ret

align 4
.lf:
	mov	ebx, lf
	ret

align 4
cr:
	cmp	al, 0Dh
	je	.cr

	cmp	al, ah
	je	.lf

	xchg	al, ah
	stosb
	inc	edx

	xchg	al, ah
	; fall through

.lf:
	stosb
	inc	edx
	mov	ebx, ordinary
	ret

align 4
.cr:
	mov	al, ah
	stosb
	inc	edx
	ret

align 4
lf:
	cmp	al, ah
	je	.lf

	cmp	al, 0Dh
	je	.cr

	xchg	al, ah
	stosb
	inc	edx

	xchg	al, ah
	stosb
	inc	edx
	mov	ebx, ordinary
	ret

align 4
.cr:
	mov	ebx, ordinary
	mov	al, ah
	; fall through

.lf:
	stosb
	inc	edx
	ret

警告:

Do not use this program on files stored on a disk formated
by MS-DOS® or Windows®. There seems to be a
subtle bug in the FreeBSD code when using mmap
on these drives mounted under FreeBSD: If the file is over
a certain size, mmap will just fill the memory
with zeros, and then copy them to the file overwriting
its contents.

10.12. One-Pointed Mind

As a student of Zen, I like the idea of a one-pointed mind:
Do one thing at a time, and do it well.

This, indeed, is very much how UNIX® works as well. While
a typical Windows® application is attempting to do everything
imaginable (and is, therefore, riddled with bugs), a
typical UNIX® program does only one thing, and it does it
well.

The typical UNIX® user then essentially assembles his own
applications by writing a shell script which combines the
various existing programs by piping the output of one
program to the input of another.

When writing your own UNIX® software, it is generally a
good idea to see what parts of the problem you need to
solve can be handled by existing programs, and only
write your own programs for that part of the problem
that you do not have an existing solution for.

10.12.1. CSV

I will illustrate this principle with a specific real-life
example I was faced with recently:

I needed to extract the 11th field of each record from a
database I downloaded from a web site. The database was a
CSV file, i.e., a list of
comma-separated values. That is quite
a standard format for sharing data among people who may be
using different database software.

The first line of the file contains the list of various fields
separated by commas. The rest of the file contains the data
listed line by line, with values separated by commas.

I tried awk, using the comma as a separator.
But because several lines contained a quoted comma,
awk was extracting the wrong field
from those lines.

Therefore, I needed to write my own software to extract the 11th
field from the CSV file. However, going with the UNIX®
spirit, I only needed to write a simple filter that would do the
following:

	
Remove the first line from the file;

	
Change all unquoted commas to a different character;

	
Remove all quotation marks.

Strictly speaking, I could use sed to remove
the first line from the file, but doing so in my own program
was very easy, so I decided to do it and reduce the size of
the pipeline.

At any rate, writing a program like this took me about
20 minutes. Writing a program that extracts the 11th field
from the CSV file would take a lot longer,
and I could not reuse it to extract some other field from some
other database.

This time I decided to let it do a little more work than
a typical tutorial program would:

	
It parses its command line for options;

	
It displays proper usage if it finds wrong arguments;

	
It produces meaningful error messages.

Here is its usage message:

Usage: csv [-t<delim>] [-c<comma>] [-p] [-o <outfile>] [-i <infile>]

All parameters are optional, and can appear in any order.

The -t parameter declares what to replace
the commas with. The tab is the default here.
For example, -t; will replace all unquoted
commas with semicolons.

I did not need the -c option, but it may
come in handy in the future. It lets me declare that I want a
character other than a comma replaced with something else.
For example, -c@ will replace all at signs
(useful if you want to split a list of email addresses
to their user names and domains).

The -p option preserves the first line, i.e.,
it does not delete it. By default, we delete the first
line because in a CSV file it contains the field
names rather than data.

The -i and -o
options let me specify the input and the output files. Defaults
are stdin and stdout,
so this is a regular UNIX® filter.

I made sure that both -i filename and
-ifilename are accepted. I also made
sure that only one input and one output files may be
specified.

To get the 11th field of each record, I can now do:

% csv '-t;' data.csv | awk '-F;' '{print $11}'

The code stores the options (except for the file descriptors)
in EDX: The comma in DH, the new
separator in DL, and the flag for
the -p option in the highest bit of
EDX, so a check for its sign will give us a
quick decision what to do.

Here is the code:

;;;;;;; csv.asm ;;;
;
; Convert a comma-separated file to a something-else separated file.
;
; Started:	31-May-2001
; Updated:	 1-Jun-2001
;
; Copyright (c) 2001 G. Adam Stanislav
; All rights reserved.
;
;;;

%include	'system.inc'

%define	BUFSIZE	2048

section	.data
fd.in	dd	stdin
fd.out	dd	stdout
usg	db	'Usage: csv [-t<delim>] [-c<comma>] [-p] [-o <outfile>] [-i <infile>]', 0Ah
usglen	equ	$-usg
iemsg	db	"csv: Can't open input file", 0Ah
iemlen	equ	$-iemsg
oemsg	db	"csv: Can't create output file", 0Ah
oemlen	equ	$-oemsg

section .bss
ibuffer	resb	BUFSIZE
obuffer	resb	BUFSIZE

section	.text
align 4
ierr:
	push	dword iemlen
	push	dword iemsg
	push	dword stderr
	sys.write
	push	dword 1		; return failure
	sys.exit

align 4
oerr:
	push	dword oemlen
	push	dword oemsg
	push	dword stderr
	sys.write
	push	dword 2
	sys.exit

align 4
usage:
	push	dword usglen
	push	dword usg
	push	dword stderr
	sys.write
	push	dword 3
	sys.exit

align 4
global	_start
_start:
	add	esp, byte 8	; discard argc and argv[0]
	mov	edx, (',' << 8) | 9

.arg:
	pop	ecx
	or	ecx, ecx
	je	near .init		; no more arguments

	; ECX contains the pointer to an argument
	cmp	byte [ecx], '-'
	jne	usage

	inc	ecx
	mov	ax, [ecx]

.o:
	cmp	al, 'o'
	jne	.i

	; Make sure we are not asked for the output file twice
	cmp	dword [fd.out], stdout
	jne	usage

	; Find the path to output file - it is either at [ECX+1],
	; i.e., -ofile --
	; or in the next argument,
	; i.e., -o file

	inc	ecx
	or	ah, ah
	jne	.openoutput
	pop	ecx
	jecxz	usage

.openoutput:
	push	dword 420	; file mode (644 octal)
	push	dword 0200h | 0400h | 01h
	; O_CREAT | O_TRUNC | O_WRONLY
	push	ecx
	sys.open
	jc	near oerr

	add	esp, byte 12
	mov	[fd.out], eax
	jmp	short .arg

.i:
	cmp	al, 'i'
	jne	.p

	; Make sure we are not asked twice
	cmp	dword [fd.in], stdin
	jne	near usage

	; Find the path to the input file
	inc	ecx
	or	ah, ah
	jne	.openinput
	pop	ecx
	or	ecx, ecx
	je near usage

.openinput:
	push	dword 0		; O_RDONLY
	push	ecx
	sys.open
	jc	near ierr		; open failed

	add	esp, byte 8
	mov	[fd.in], eax
	jmp	.arg

.p:
	cmp	al, 'p'
	jne	.t
	or	ah, ah
	jne	near usage
	or	edx, 1 << 31
	jmp	.arg

.t:
	cmp	al, 't'		; redefine output delimiter
	jne	.c
	or	ah, ah
	je	near usage
	mov	dl, ah
	jmp	.arg

.c:
	cmp	al, 'c'
	jne	near usage
	or	ah, ah
	je	near usage
	mov	dh, ah
	jmp	.arg

align 4
.init:
	sub	eax, eax
	sub	ebx, ebx
	sub	ecx, ecx
	mov	edi, obuffer

	; See if we are to preserve the first line
	or	edx, edx
	js	.loop

.firstline:
	; get rid of the first line
	call	getchar
	cmp	al, 0Ah
	jne	.firstline

.loop:
	; read a byte from stdin
	call	getchar

	; is it a comma (or whatever the user asked for)?
	cmp	al, dh
	jne	.quote

	; Replace the comma with a tab (or whatever the user wants)
	mov	al, dl

.put:
	call	putchar
	jmp	short .loop

.quote:
	cmp	al, '"'
	jne	.put

	; Print everything until you get another quote or EOL. If it
	; is a quote, skip it. If it is EOL, print it.
.qloop:
	call	getchar
	cmp	al, '"'
	je	.loop

	cmp	al, 0Ah
	je	.put

	call	putchar
	jmp	short .qloop

align 4
getchar:
	or	ebx, ebx
	jne	.fetch

	call	read

.fetch:
	lodsb
	dec	ebx
	ret

read:
	jecxz	.read
	call	write

.read:
	push	dword BUFSIZE
	mov	esi, ibuffer
	push	esi
	push	dword [fd.in]
	sys.read
	add	esp, byte 12
	mov	ebx, eax
	or	eax, eax
	je	.done
	sub	eax, eax
	ret

align 4
.done:
	call	write		; flush output buffer

	; close files
	push	dword [fd.in]
	sys.close

	push	dword [fd.out]
	sys.close

	; return success
	push	dword 0
	sys.exit

align 4
putchar:
	stosb
	inc	ecx
	cmp	ecx, BUFSIZE
	je	write
	ret

align 4
write:
	jecxz	.ret	; nothing to write
	sub	edi, ecx	; start of buffer
	push	ecx
	push	edi
	push	dword [fd.out]
	sys.write
	add	esp, byte 12
	sub	eax, eax
	sub	ecx, ecx	; buffer is empty now
.ret:
	ret

Much of it is taken from hex.asm above. But there
is one important difference: I no longer call write
whenever I am outputting a line feed. Yet, the code can be
used interactively.

I have found a better solution for the interactive problem
since I first started writing this chapter. I wanted to
make sure each line is printed out separately only when needed.
After all, there is no need to flush out every line when used
non-interactively.

The new solution I use now is to call write every
time I find the input buffer empty. That way, when running in
the interactive mode, the program reads one line from the user's
keyboard, processes it, and sees its input buffer is empty. It
flushes its output and reads the next line.

10.12.1.1. The Dark Side of Buffering

This change prevents a mysterious lockup
in a very specific case. I refer to it as the
dark side of buffering, mostly
because it presents a danger that is not
quite obvious.

It is unlikely to happen with a program like the
csv above, so let us consider yet
another filter: In this case we expect our input
to be raw data representing color values, such as
the red, green, and
blue intensities of a pixel. Our
output will be the negative of our input.

Such a filter would be very simple to write.
Most of it would look just like all the other
filters we have written so far, so I am only
going to show you its inner loop:

.loop:
	call	getchar
	not	al		; Create a negative
	call	putchar
	jmp	short .loop

Because this filter works with raw data,
it is unlikely to be used interactively.

But it could be called by image manipulation software.
And, unless it calls write before each call
to read, chances are it will lock up.

Here is what might happen:

	
The image editor will load our filter using the
C function popen().

	
It will read the first row of pixels from
a bitmap or pixmap.

	
It will write the first row of pixels to
the pipe leading to
the fd.in of our filter.

	
Our filter will read each pixel
from its input, turn it to a negative,
and write it to its output buffer.

	
Our filter will call getchar
to fetch the next pixel.

	
getchar will find an empty
input buffer, so it will call
read.

	
read will call the
SYS_read system call.

	
The kernel will suspend
our filter until the image editor
sends more data to the pipe.

	
The image editor will read from the
other pipe, connected to the
fd.out of our filter so it can set the first row of the
output image before
it sends us the second row of the input.

	
The kernel suspends
the image editor until it receives
some output from our filter, so it
can pass it on to the image editor.

At this point our filter waits for the image
editor to send it more data to process, while
the image editor is waiting for our filter
to send it the result of the processing
of the first row. But the result sits in
our output buffer.

The filter and the image editor will continue
waiting for each other forever (or, at least,
until they are killed). Our software has just
entered a
race condition.

This problem does not exist if our filter flushes
its output buffer before asking the
kernel for more input data.

10.13. Using the FPU

Strangely enough, most of assembly language literature does not
even mention the existence of the FPU,
or floating point unit, let alone discuss
programming it.

Yet, never does assembly language shine more than when
we create highly optimized FPU
code by doing things that can be done only in assembly language.
10.13.1. Organization of the FPU

The FPU consists of 8 80–bit floating–point registers.
These are organized in a stack fashion——you can
push a value on TOS
(top of stack) and you can
pop it.

That said, the assembly language op codes are not push
and pop because those are already taken.

You can push a value on TOS
by using fld, fild,
and fbld. Several other op codes
let you push many common
constants——such as pi——on
the TOS.

Similarly, you can pop a value by
using fst, fstp,
fist, fistp, and
fbstp. Actually, only the op
codes that end with a p will
literally pop the value,
the rest will store it
somewhere else without removing it from
the TOS.

We can transfer the data between the
TOS and the computer memory either as
a 32–bit, 64–bit, or 80–bit real,
a 16–bit, 32–bit, or 64–bit integer,
or an 80–bit packed decimal.

The 80–bit packed decimal is
a special case of binary coded
decimal which is very convenient when
converting between the ASCII
representation of data and the internal
data of the FPU. It allows us to use
18 significant digits.

No matter how we represent data in the memory,
the FPU always stores it in the 80–bit
real format in its registers.

Its internal precision is at least 19 decimal
digits, so even if we choose to display results
as ASCII in the full
18–digit precision, we are still showing
correct results.

We can perform mathematical operations on the
TOS: We can calculate its
sine, we can scale it
(i.e., we can multiply or divide it by a power
of 2), we can calculate its base–2
logarithm, and many other things.

We can also multiply or
divide it by, add
it to, or subtract it from,
any of the FPU registers (including
itself).

The official Intel op code for the
TOS is st, and
for the registers
st(0)–st(7).
st and st(0), then,
refer to the same register.

For whatever reasons, the original author of
nasm has decided to use
different op codes, namely
st0–st7.
In other words, there are no parentheses,
and the TOS is always
st0, never just st.

10.13.1.1. The Packed Decimal Format

The packed decimal format
uses 10 bytes (80 bits) of
memory to represent 18 digits. The
number represented there is always an
integer.

提示:

You can use it to get decimal places
by multiplying the TOS
by a power of 10 first.

The highest bit of the highest byte
(byte 9) is the sign bit:
If it is set, the number is negative,
otherwise, it is positive.
The rest of the bits of this byte are unused/ignored.

The remaining 9 bytes store the 18 digits
of the number: 2 digits per byte.

The more significant digit is
stored in the high nibble
(4 bits), the less significant
digit in the low nibble.

That said, you might think that -1234567
would be stored in the memory like this (using
hexadecimal notation):

80 00 00 00 00 00 01 23 45 67

Alas it is not! As with everything else of Intel make,
even the packed decimal is
little–endian.

That means our -1234567
is stored like this:

67 45 23 01 00 00 00 00 00 80

Remember that, or you will be pulling your hair out
in desperation!

注意:

The book to read——if you can find it——is Richard Startz'
8087/80287/80387
for the IBM PC & Compatibles.
Though it does seem to take the fact about the
little–endian storage of the packed
decimal for granted. I kid you not about the
desperation of trying to figure out what was wrong
with the filter I show below before
it occurred to me I should try the
little–endian order even for this type of data.

10.13.2. Excursion to Pinhole Photography

To write meaningful software, we must not only
understand our programming tools, but also the
field we are creating software for.

Our next filter will help us whenever we want
to build a pinhole camera,
so, we need some background in pinhole
photography before we can continue.

10.13.2.1. The Camera

The easiest way to describe any camera ever built
is as some empty space enclosed in some
lightproof material, with a small hole in the
enclosure.

The enclosure is usually sturdy (e.g., a box),
though sometimes it is flexible (the bellows).
It is quite dark inside the camera. However, the
hole lets light rays in through a single point
(though in some cases there may be several).
These light rays form an image, a representation
of whatever is outside the camera, in front of the
hole.

If some light sensitive material (such as film)
is placed inside the camera, it can capture the
image.

The hole often contains a lens, or
a lens assembly, often called the objective.

10.13.2.2. The Pinhole

But, strictly speaking, the lens is not necessary:
The original cameras did not use a lens but a
pinhole. Even today, pinholes
are used, both as a tool to study how cameras
work, and to achieve a special kind of image.

The image produced by the pinhole
is all equally sharp. Or blurred.
There is an ideal size for a pinhole: If it is
either larger or smaller, the image loses its
sharpness.
10.13.2.3. Focal Length

This ideal pinhole diameter is a function
of the square root of focal
length, which is the distance of the
pinhole from the film.

	D = PC * sqrt(FL)

In here, D is the
ideal diameter of the pinhole,
FL is the focal length,
and PC is a pinhole
constant. According to Jay Bender,
its value is 0.04, while
Kenneth Connors has determined it to
be 0.037. Others have
proposed other values. Plus, this
value is for the daylight only: Other types
of light will require a different constant,
whose value can only be determined by
experimentation.

10.13.2.4. The F–Number

The f–number is a very useful measure of
how much light reaches the film. A light
meter can determine that, for example,
to expose a film of specific sensitivity
with f5.6 may require the exposure to last
1/1000 sec.

It does not matter whether it is a 35–mm
camera, or a 6x9cm camera, etc.
As long as we know the f–number, we can determine
the proper exposure.

The f–number is easy to calculate:

	F = FL / D

In other words, the f–number equals the focal
length divided by the diameter of the pinhole.
It also means a higher f–number either implies
a smaller pinhole or a larger focal distance,
or both. That, in turn, implies, the higher
the f–number, the longer the exposure has to be.

Furthermore, while pinhole diameter and focal
distance are one–dimensional measurements,
both, the film and the pinhole, are two–dimensional.
That means that
if you have measured the exposure at f–number
A as t, then the exposure
at f–number B is:

	t * (B / A)²

10.13.2.5. Normalized F–Number

While many modern cameras can change the diameter
of their pinhole, and thus their f–number, quite
smoothly and gradually, such was not always the case.

To allow for different f–numbers, cameras typically
contained a metal plate with several holes of
different sizes drilled to them.

Their sizes were chosen according to the above
formula in such a way that the resultant f–number
was one of standard f–numbers used on all cameras
everywhere. For example, a very old Kodak Duaflex IV
camera in my possession has three such holes for
f–numbers 8, 11, and 16.

A more recently made camera may offer f–numbers of
2.8, 4, 5.6, 8, 11,
16, 22, and 32 (as well as others).
These numbers were not chosen arbitrarily: They all are
powers of the square root of 2, though they may
be rounded somewhat.

10.13.2.6. The F–Stop

A typical camera is designed in such a way that setting
any of the normalized f–numbers changes the feel of the
dial. It will naturally stop in that
position. Because of that, these positions of the dial
are called f–stops.

Since the f–numbers at each stop are powers of the
square root of 2, moving the dial by 1
stop will double the amount of light required for
proper exposure. Moving it by 2 stops will
quadruple the required exposure. Moving the dial by
3 stops will require the increase in exposure
8 times, etc.

10.13.3. Designing the Pinhole Software

We are now ready to decide what exactly we want our
pinhole software to do.

10.13.3.1. Processing Program Input

Since its main purpose is to help us design a working
pinhole camera, we will use the focal
length as the input to the program. This is something
we can determine without software: Proper focal length
is determined by the size of the film and by the need
to shoot "regular" pictures, wide angle pictures, or
telephoto pictures.

Most of the programs we have written so far worked with
individual characters, or bytes, as their input: The
hex program converted individual bytes
into a hexadecimal number, the csv
program either let a character through, or deleted it,
or changed it to a different character, etc.

One program, ftuc used the state machine
to consider at most two input bytes at a time.

But our pinhole program cannot just
work with individual characters, it has to deal with
larger syntactic units.

For example, if we want the program to calculate the
pinhole diameter (and other values we will discuss
later) at the focal lengths of 100 mm,
150 mm, and 210 mm, we may want
to enter something like this:
100, 150, 210

Our program needs to consider more than a single byte of
input at a time. When it sees the first 1,
it must understand it is seeing the first digit of a
decimal number. When it sees the 0 and
the other 0, it must know it is seeing
more digits of the same number.

When it encounters the first comma, it must know it is
no longer receiving the digits of the first number.
It must be able to convert the digits of the first number
into the value of 100. And the digits of the
second number into the value of 150. And,
of course, the digits of the third number into the
numeric value of 210.

We need to decide what delimiters to accept: Do the
input numbers have to be separated by a comma? If so,
how do we treat two numbers separated by something else?

Personally, I like to keep it simple. Something either
is a number, so I process it. Or it is not a number,
so I discard it. I do not like the computer complaining
about me typing in an extra character when it is
obvious that it is an extra character. Duh!

Plus, it allows me to break up the monotony of computing
and type in a query instead of just a number:

What is the best pinhole diameter for the focal length of 150?

There is no reason for the computer to spit out
a number of complaints:

Syntax error: What
Syntax error: is
Syntax error: the
Syntax error: best

Et cetera, et cetera, et cetera.

Secondly, I like the # character to denote
the start of a comment which extends to the end of the
line. This does not take too much effort to code, and
lets me treat input files for my software as executable
scripts.

In our case, we also need to decide what units the
input should come in: We choose millimeters
because that is how most photographers measure
the focus length.

Finally, we need to decide whether to allow the use
of the decimal point (in which case we must also
consider the fact that much of the world uses a
decimal comma).

In our case allowing for the decimal point/comma
would offer a false sense of precision: There is
little if any noticeable difference between the
focus lengths of 50 and 51,
so allowing the user to input something like
50.5 is not a good idea. This is
my opinion, mind you, but I am the one writing
this program. You can make other choices in yours,
of course.

10.13.3.2. Offering Options

The most important thing we need to know when building
a pinhole camera is the diameter of the pinhole. Since
we want to shoot sharp images, we will use the above
formula to calculate the pinhole diameter from focal length.
As experts are offering several different values for the
PC constant, we will need to have the choice.

It is traditional in UNIX® programming to have two main ways
of choosing program parameters, plus to have a default for
the time the user does not make a choice.

Why have two ways of choosing?

One is to allow a (relatively) permanent
choice that applies automatically each time the
software is run without us having to tell it over and
over what we want it to do.

The permanent choices may be stored in a configuration
file, typically found in the user's home directory.
The file usually has the same name as the application
but is started with a dot. Often "rc"
is added to the file name. So, ours could be
~/.pinhole or ~/.pinholerc.
(The ~/ means current user's
home directory.)

The configuration file is used mostly by programs
that have many configurable parameters. Those
that have only one (or a few) often use a different
method: They expect to find the parameter in an
environment variable. In our case,
we might look at an environment variable named
PINHOLE.

Usually, a program uses one or the other of the
above methods. Otherwise, if a configuration
file said one thing, but an environment variable
another, the program might get confused (or just
too complicated).

Because we only need to choose one
such parameter, we will go with the second method
and search the environment for a variable named
PINHOLE.

The other way allows us to make ad hoc
decisions: "Though I usually want
you to use 0.039, this time I want 0.03872."
In other words, it allows us to override
the permanent choice.

This type of choice is usually done with command
line parameters.

Finally, a program always needs a
default. The user may not make
any choices. Perhaps he does not know what
to choose. Perhaps he is "just browsing."
Preferably, the default will be the value
most users would choose anyway. That way
they do not need to choose. Or, rather, they
can choose the default without an additional
effort.

Given this system, the program may find conflicting
options, and handle them this way:

	
If it finds an ad hoc choice
(e.g., command line parameter), it should
accept that choice. It must ignore any permanent
choice and any default.

	
Otherwise, if it finds
a permanent option (e.g., an environment
variable), it should accept it, and ignore
the default.

	
Otherwise, it should use
the default.

We also need to decide what format
our PC option should have.

At first site, it seems obvious to use the
PINHOLE=0.04 format for the
environment variable, and -p0.04
for the command line.

Allowing that is actually a security risk.
The PC constant is a very small
number. Naturally, we will test our software
using various small values of PC.
But what will happen if someone runs the program
choosing a huge value?

It may crash the program because we have not
designed it to handle huge numbers.

Or, we may spend more time on the program so
it can handle huge numbers. We might do that
if we were writing commercial software for
computer illiterate audience.

Or, we might say, "Tough!
The user should know better.""

Or, we just may make it impossible for the user
to enter a huge number. This is the approach we
will take: We will use an implied 0.
prefix.

In other words, if the user wants 0.04,
we will expect him to type -p04,
or set PINHOLE=04 in his environment.
So, if he says -p9999999, we will
interpret it as 0.9999999——still
ridiculous but at least safer.

Secondly, many users will just want to go with either
Bender's constant or Connors' constant.
To make it easier on them, we will interpret
-b as identical to -p04,
and -c as identical to -p037.

10.13.3.3. The Output

We need to decide what we want our software to
send to the output, and in what format.

Since our input allows for an unspecified number
of focal length entries, it makes sense to use
a traditional database–style output of showing
the result of the calculation for each
focal length on a separate line, while
separating all values on one line by a
tab character.

Optionally, we should also allow the user
to specify the use of the CSV
format we have studied earlier. In this case,
we will print out a line of comma–separated
names describing each field of every line,
then show our results as before, but substituting
a comma for the tab.

We need a command line option for the CSV
format. We cannot use -c because
that already means use Connors' constant.
For some strange reason, many web sites refer to
CSV files as "Excel
spreadsheet" (though the CSV
format predates Excel). We will, therefore, use
the -e switch to inform our software
we want the output in the CSV format.

We will start each line of the output with the
focal length. This may sound repetitious at first,
especially in the interactive mode: The user
types in the focal length, and we are repeating it.

But the user can type several focal lengths on one
line. The input can also come in from a file or
from the output of another program. In that case
the user does not see the input at all.

By the same token, the output can go to a file
which we will want to examine later, or it could
go to the printer, or become the input of another
program.

So, it makes perfect sense to start each line with
the focal length as entered by the user.

No, wait! Not as entered by the user. What if the user
types in something like this:
00000000150

Clearly, we need to strip those leading zeros.

So, we might consider reading the user input as is,
converting it to binary inside the FPU,
and printing it out from there.

But...

What if the user types something like this:

17459765723452353453534535353530530534563507309676764423

Ha! The packed decimal FPU format
lets us input 18–digit numbers. But the
user has entered more than 18 digits. How
do we handle that?

Well, we could modify our code to read
the first 18 digits, enter it to the FPU,
then read more, multiply what we already have on the
TOS by 10 raised to the number
of additional digits, then add to it.

Yes, we could do that. But in this
program it would be ridiculous (in a different one it may be just the thing to do): Even the circumference of the Earth expressed in
millimeters only takes 11 digits. Clearly,
we cannot build a camera that large (not yet,
anyway).

So, if the user enters such a huge number, he is
either bored, or testing us, or trying to break
into the system, or playing games——doing
anything but designing a pinhole camera.

What will we do?

We will slap him in the face, in a manner of speaking:
17459765723452353453534535353530530534563507309676764423	???	???	???	???	???

To achieve that, we will simply ignore any leading zeros.
Once we find a non–zero digit, we will initialize a
counter to 0 and start taking three steps:

	
Send the digit to the output.

	
Append the digit to a buffer we will use later to
produce the packed decimal we can send to the
FPU.

	
Increase the counter.

Now, while we are taking these three steps,
we also need to watch out for one of two
conditions:
	
If the counter grows above 18,
we stop appending to the buffer. We
continue reading the digits and sending
them to the output.

	
If, or rather when,
the next input character is not
a digit, we are done inputting
for now.

Incidentally, we can simply
discard the non–digit, unless it
is a #, which we must
return to the input stream. It
starts a comment, so we must see it
after we are done producing output
and start looking for more input.

That still leaves one possibility
uncovered: If all the user enters
is a zero (or several zeros), we
will never find a non–zero to
display.

We can determine this has happened
whenever our counter stays at 0.
In that case we need to send 0
to the output, and perform another
"slap in the face":

0	???	???	???	???	???

Once we have displayed the focal
length and determined it is valid
(greater than 0
but not exceeding 18 digits),
we can calculate the pinhole diameter.

It is not by coincidence that pinhole
contains the word pin. Indeed,
many a pinhole literally is a pin
hole, a hole carefully punched with the
tip of a pin.

That is because a typical pinhole is very
small. Our formula gets the result in
millimeters. We will multiply it by 1000,
so we can output the result in microns.

At this point we have yet another trap to face:
Too much precision.

Yes, the FPU was designed
for high precision mathematics. But we
are not dealing with high precision
mathematics. We are dealing with physics
(optics, specifically).

Suppose we want to convert a truck into
a pinhole camera (we would not be the
first ones to do that!). Suppose its box is
12
meters long, so we have the focal length
of 12000. Well, using Bender's constant, it gives us square root of
12000 multiplied by 0.04,
which is 4.381780460 millimeters,
or 4381.780460 microns.

Put either way, the result is absurdly precise.
Our truck is not exactly 12000
millimeters long. We did not measure its length
with such a precision, so stating we need a pinhole
with the diameter of 4.381780460
millimeters is, well, deceiving. 4.4
millimeters would do just fine.

注意:

I "only" used ten digits in the above example.
Imagine the absurdity of going for all 18!

We need to limit the number of significant
digits of our result. One way of doing it
is by using an integer representing microns.
So, our truck would need a pinhole with the diameter
of 4382 microns. Looking at that number, we still decide that 4400 microns,
or 4.4 millimeters is close enough.

Additionally, we can decide that no matter how
big a result we get, we only want to display four
significant digits (or any other number
of them, of course). Alas, the FPU
does not offer rounding to a specific number
of digits (after all, it does not view the
numbers as decimal but as binary).

We, therefore, must devise an algorithm to reduce
the number of significant digits.

Here is mine (I think it is awkward——if
you know a better one, please, let me know):
	
Initialize a counter to 0.

	
While the number is greater than or equal to
10000, divide it by
10 and increase the counter.

	
Output the result.

	
While the counter is greater than 0,
output 0 and decrease the counter.

注意:

The 10000 is only good if you want
four significant digits. For any other
number of significant digits, replace
10000 with 10
raised to the number of significant digits.

We will, then, output the pinhole diameter
in microns, rounded off to four significant
digits.

At this point, we know the focal
length and the pinhole
diameter. That means we have enough
information to also calculate the
f–number.

We will display the f–number, rounded to
four significant digits. Chances are the
f–number will tell us very little. To make
it more meaningful, we can find the nearest
normalized f–number, i.e.,
the nearest power of the square root
of 2.

We do that by multiplying the actual f–number
by itself, which, of course, will give us
its square. We will then calculate
its base–2 logarithm, which is much
easier to do than calculating the
base–square–root–of–2 logarithm!
We will round the result to the nearest integer.
Next, we will raise 2 to the result. Actually,
the FPU gives us a good shortcut
to do that: We can use the fscale
op code to "scale" 1, which is
analogous to shifting an
integer left. Finally, we calculate the square
root of it all, and we have the nearest
normalized f–number.

If all that sounds overwhelming——or too much
work, perhaps——it may become much clearer
if you see the code. It takes 9 op
codes altogether:

	fmul	st0, st0
	fld1
	fld	st1
	fyl2x
	frndint
	fld1
	fscale
	fsqrt
	fstp	st1

The first line, fmul st0, st0, squares
the contents of the TOS
(top of the stack, same as st,
called st0 by nasm).
The fld1 pushes 1
on the TOS.

The next line, fld st1, pushes
the square back to the TOS.
At this point the square is both in st
and st(2) (it will become
clear why we leave a second copy on the stack
in a moment). st(1) contains
1.

Next, fyl2x calculates base–2
logarithm of st multiplied by
st(1). That is why we placed 1 on st(1) before.

At this point, st contains
the logarithm we have just calculated,
st(1) contains the square
of the actual f–number we saved for later.

frndint rounds the TOS
to the nearest integer. fld1 pushes
a 1. fscale shifts the
1 we have on the TOS
by the value in st(1),
effectively raising 2 to st(1).

Finally, fsqrt calculates
the square root of the result, i.e.,
the nearest normalized f–number.

We now have the nearest normalized
f–number on the TOS,
the base–2 logarithm rounded to the
nearest integer in st(1),
and the square of the actual f–number
in st(2). We are saving
the value in st(2) for later.

But we do not need the contents of
st(1) anymore. The last
line, fstp st1, places the
contents of st to
st(1), and pops. As a
result, what was st(1)
is now st, what was st(2)
is now st(1), etc.
The new st contains the
normalized f–number. The new
st(1) contains the square
of the actual f–number we have
stored there for posterity.

At this point, we are ready to output
the normalized f–number. Because it is
normalized, we will not round it off to
four significant digits, but will
send it out in its full precision.

The normalized f-number is useful as long
as it is reasonably small and can be found
on our light meter. Otherwise we need a
different method of determining proper
exposure.

Earlier we have figured out the formula
of calculating proper exposure at an arbitrary
f–number from that measured at a different
f–number.

Every light meter I have ever seen can determine
proper exposure at f5.6. We will, therefore,
calculate an "f5.6 multiplier,"
i.e., by how much we need to multiply the exposure measured
at f5.6 to determine the proper exposure
for our pinhole camera.

From the above formula we know this factor can be
calculated by dividing our f–number (the
actual one, not the normalized one) by
5.6, and squaring the result.

Mathematically, dividing the square of our
f–number by the square of 5.6
will give us the same result.

Computationally, we do not want to square
two numbers when we can only square one.
So, the first solution seems better at first.

But...

5.6 is a constant.
We do not have to have our FPU
waste precious cycles. We can just tell it
to divide the square of the f–number by
whatever 5.6² equals to.
Or we can divide the f–number by 5.6,
and then square the result. The two ways
now seem equal.

But, they are not!

Having studied the principles of photography
above, we remember that the 5.6
is actually square root of 2 raised to
the fifth power. An irrational
number. The square of this number is
exactly 32.

Not only is 32 an integer,
it is a power of 2. We do not need
to divide the square of the f–number by
32. We only need to use
fscale to shift it right by
five positions. In the FPU
lingo it means we will fscale it
with st(1) equal to
-5. That is much
faster than a division.

So, now it has become clear why we have
saved the square of the f–number on the
top of the FPU stack.
The calculation of the f5.6 multiplier
is the easiest calculation of this
entire program! We will output it rounded
to four significant digits.

There is one more useful number we can calculate:
The number of stops our f–number is from f5.6.
This may help us if our f–number is just outside
the range of our light meter, but we have
a shutter which lets us set various speeds,
and this shutter uses stops.

Say, our f–number is 5 stops from
f5.6, and the light meter says
we should use 1/1000 sec.
Then we can set our shutter speed to 1/1000
first, then move the dial by 5 stops.

This calculation is quite easy as well. All
we have to do is to calculate the base-2
logarithm of the f5.6 multiplier
we had just calculated (though we need its
value from before we rounded it off). We then
output the result rounded to the nearest integer.
We do not need to worry about having more than
four significant digits in this one: The result
is most likely to have only one or two digits
anyway.
10.13.4. FPU Optimizations

In assembly language we can optimize the FPU
code in ways impossible in high languages,
including C.

Whenever a C function needs to calculate
a floating–point value, it loads all necessary
variables and constants into FPU
registers. It then does whatever calculation is
required to get the correct result. Good C
compilers can optimize that part of the code really
well.

It "returns" the value by leaving
the result on the TOS.
However, before it returns, it cleans up.
Any variables and constants it used in its
calculation are now gone from the FPU.

It cannot do what we just did above: We calculated
the square of the f–number and kept it on the
stack for later use by another function.

We knew we would need that value
later on. We also knew we had enough room on the
stack (which only has room for 8 numbers)
to store it there.

A C compiler has no way of knowing
that a value it has on the stack will be
required again in the very near future.

Of course, the C programmer may know it.
But the only recourse he has is to store the
value in a memory variable.

That means, for one, the value will be changed
from the 80-bit precision used internally
by the FPU to a C double
(64 bits) or even single (32
bits).

That also means that the value must be moved
from the TOS into the memory,
and then back again. Alas, of all FPU
operations, the ones that access the computer
memory are the slowest.

So, whenever programming the FPU
in assembly language, look for the ways of keeping
intermediate results on the FPU
stack.

We can take that idea even further! In our
program we are using a constant
(the one we named PC).

It does not matter how many pinhole diameters
we are calculating: 1, 10, 20,
1000, we are always using the same constant.
Therefore, we can optimize our program by keeping
the constant on the stack all the time.

Early on in our program, we are calculating the
value of the above constant. We need to divide
our input by 10 for every digit in the
constant.

It is much faster to multiply than to divide.
So, at the start of our program, we divide 10
into 1 to obtain 0.1, which we
then keep on the stack: Instead of dividing the
input by 10 for every digit,
we multiply it by 0.1.

By the way, we do not input 0.1 directly,
even though we could. We have a reason for that:
While 0.1 can be expressed with just one
decimal place, we do not know how many binary
places it takes. We, therefore, let the FPU
calculate its binary value to its own high precision.

We are using other constants: We multiply the pinhole
diameter by 1000 to convert it from
millimeters to microns. We compare numbers to
10000 when we are rounding them off to
four significant digits. So, we keep both, 1000
and 10000, on the stack. And, of course,
we reuse the 0.1 when rounding off numbers
to four digits.

Last but not least, we keep -5 on the stack.
We need it to scale the square of the f–number,
instead of dividing it by 32. It is not
by coincidence we load this constant last. That makes
it the top of the stack when only the constants
are on it. So, when the square of the f–number is
being scaled, the -5 is at st(1),
precisely where fscale expects it to be.

It is common to create certain constants from
scratch instead of loading them from the memory.
That is what we are doing with -5:

	fld1			; TOS = 1
	fadd	st0, st0	; TOS = 2
	fadd	st0, st0	; TOS = 4
	fld1			; TOS = 1
	faddp	st1, st0	; TOS = 5
	fchs			; TOS = -5

We can generalize all these optimizations into one rule:
Keep repeat values on the stack!

提示:

PostScript® is a stack–oriented
programming language. There are many more books
available about PostScript® than about the
FPU assembly language: Mastering
PostScript® will help you master the FPU.

10.13.5. pinhole——The Code

;;;;;;; pinhole.asm ;;;
;
; Find various parameters of a pinhole camera construction and use
;
; Started:	 9-Jun-2001
; Updated:	10-Jun-2001
;
; Copyright (c) 2001 G. Adam Stanislav
; All rights reserved.
;
;;;

%include	'system.inc'

%define	BUFSIZE	2048

section	.data
align 4
ten	dd	10
thousand	dd	1000
tthou	dd	10000
fd.in	dd	stdin
fd.out	dd	stdout
envar	db	'PINHOLE='	; Exactly 8 bytes, or 2 dwords long
pinhole	db	'04,', 		; Bender's constant (0.04)
connors	db	'037', 0Ah	; Connors' constant
usg	db	'Usage: pinhole [-b] [-c] [-e] [-p <value>] [-o <outfile>] [-i <infile>]', 0Ah
usglen	equ	$-usg
iemsg	db	"pinhole: Can't open input file", 0Ah
iemlen	equ	$-iemsg
oemsg	db	"pinhole: Can't create output file", 0Ah
oemlen	equ	$-oemsg
pinmsg	db	"pinhole: The PINHOLE constant must not be 0", 0Ah
pinlen	equ	$-pinmsg
toobig	db	"pinhole: The PINHOLE constant may not exceed 18 decimal places", 0Ah
biglen	equ	$-toobig
huhmsg	db	9, '???'
separ	db	9, '???'
sep2	db	9, '???'
sep3	db	9, '???'
sep4	db	9, '???', 0Ah
huhlen	equ	$-huhmsg
header	db	'focal length in millimeters,pinhole diameter in microns,'
	db	'F-number,normalized F-number,F-5.6 multiplier,stops '
	db	'from F-5.6', 0Ah
headlen	equ	$-header

section .bss
ibuffer	resb	BUFSIZE
obuffer	resb	BUFSIZE
dbuffer	resb	20		; decimal input buffer
bbuffer	resb	10		; BCD buffer

section	.text
align 4
huh:
	call	write
	push	dword huhlen
	push	dword huhmsg
	push	dword [fd.out]
	sys.write
	add	esp, byte 12
	ret

align 4
perr:
	push	dword pinlen
	push	dword pinmsg
	push	dword stderr
	sys.write
	push	dword 4		; return failure
	sys.exit

align 4
consttoobig:
	push	dword biglen
	push	dword toobig
	push	dword stderr
	sys.write
	push	dword 5		; return failure
	sys.exit

align 4
ierr:
	push	dword iemlen
	push	dword iemsg
	push	dword stderr
	sys.write
	push	dword 1		; return failure
	sys.exit

align 4
oerr:
	push	dword oemlen
	push	dword oemsg
	push	dword stderr
	sys.write
	push	dword 2
	sys.exit

align 4
usage:
	push	dword usglen
	push	dword usg
	push	dword stderr
	sys.write
	push	dword 3
	sys.exit

align 4
global	_start
_start:
	add	esp, byte 8	; discard argc and argv[0]
	sub	esi, esi

.arg:
	pop	ecx
	or	ecx, ecx
	je	near .getenv		; no more arguments

	; ECX contains the pointer to an argument
	cmp	byte [ecx], '-'
	jne	usage

	inc	ecx
	mov	ax, [ecx]
	inc	ecx

.o:
	cmp	al, 'o'
	jne	.i

	; Make sure we are not asked for the output file twice
	cmp	dword [fd.out], stdout
	jne	usage

	; Find the path to output file - it is either at [ECX+1],
	; i.e., -ofile --
	; or in the next argument,
	; i.e., -o file

	or	ah, ah
	jne	.openoutput
	pop	ecx
	jecxz	usage

.openoutput:
	push	dword 420	; file mode (644 octal)
	push	dword 0200h | 0400h | 01h
	; O_CREAT | O_TRUNC | O_WRONLY
	push	ecx
	sys.open
	jc	near oerr

	add	esp, byte 12
	mov	[fd.out], eax
	jmp	short .arg

.i:
	cmp	al, 'i'
	jne	.p

	; Make sure we are not asked twice
	cmp	dword [fd.in], stdin
	jne	near usage

	; Find the path to the input file
	or	ah, ah
	jne	.openinput
	pop	ecx
	or	ecx, ecx
	je near usage

.openinput:
	push	dword 0		; O_RDONLY
	push	ecx
	sys.open
	jc	near ierr		; open failed

	add	esp, byte 8
	mov	[fd.in], eax
	jmp	.arg

.p:
	cmp	al, 'p'
	jne	.c
	or	ah, ah
	jne	.pcheck

	pop	ecx
	or	ecx, ecx
	je	near usage

	mov	ah, [ecx]

.pcheck:
	cmp	ah, '0'
	jl	near usage
	cmp	ah, '9'
	ja	near usage
	mov	esi, ecx
	jmp	.arg

.c:
	cmp	al, 'c'
	jne	.b
	or	ah, ah
	jne	near usage
	mov	esi, connors
	jmp	.arg

.b:
	cmp	al, 'b'
	jne	.e
	or	ah, ah
	jne	near usage
	mov	esi, pinhole
	jmp	.arg

.e:
	cmp	al, 'e'
	jne	near usage
	or	ah, ah
	jne	near usage
	mov	al, ','
	mov	[huhmsg], al
	mov	[separ], al
	mov	[sep2], al
	mov	[sep3], al
	mov	[sep4], al
	jmp	.arg

align 4
.getenv:
	; If ESI = 0, we did not have a -p argument,
	; and need to check the environment for "PINHOLE="
	or	esi, esi
	jne	.init

	sub	ecx, ecx

.nextenv:
	pop	esi
	or	esi, esi
	je	.default	; no PINHOLE envar found

	; check if this envar starts with 'PINHOLE='
	mov	edi, envar
	mov	cl, 2		; 'PINHOLE=' is 2 dwords long
rep	cmpsd
	jne	.nextenv

	; Check if it is followed by a digit
	mov	al, [esi]
	cmp	al, '0'
	jl	.default
	cmp	al, '9'
	jbe	.init
	; fall through

align 4
.default:
	; We got here because we had no -p argument,
	; and did not find the PINHOLE envar.
	mov	esi, pinhole
	; fall through

align 4
.init:
	sub	eax, eax
	sub	ebx, ebx
	sub	ecx, ecx
	sub	edx, edx
	mov	edi, dbuffer+1
	mov	byte [dbuffer], '0'

	; Convert the pinhole constant to real
.constloop:
	lodsb
	cmp	al, '9'
	ja	.setconst
	cmp	al, '0'
	je	.processconst
	jb	.setconst

	inc	dl

.processconst:
	inc	cl
	cmp	cl, 18
	ja	near consttoobig
	stosb
	jmp	short .constloop

align 4
.setconst:
	or	dl, dl
	je	near perr

	finit
	fild	dword [tthou]

	fld1
	fild	dword [ten]
	fdivp	st1, st0

	fild	dword [thousand]
	mov	edi, obuffer

	mov	ebp, ecx
	call	bcdload

.constdiv:
	fmul	st0, st2
	loop	.constdiv

	fld1
	fadd	st0, st0
	fadd	st0, st0
	fld1
	faddp	st1, st0
	fchs

	; If we are creating a CSV file,
	; print header
	cmp	byte [separ], ','
	jne	.bigloop

	push	dword headlen
	push	dword header
	push	dword [fd.out]
	sys.write

.bigloop:
	call	getchar
	jc	near done

	; Skip to the end of the line if you got '#'
	cmp	al, '#'
	jne	.num
	call	skiptoeol
	jmp	short .bigloop

.num:
	; See if you got a number
	cmp	al, '0'
	jl	.bigloop
	cmp	al, '9'
	ja	.bigloop

	; Yes, we have a number
	sub	ebp, ebp
	sub	edx, edx

.number:
	cmp	al, '0'
	je	.number0
	mov	dl, 1

.number0:
	or	dl, dl		; Skip leading 0's
	je	.nextnumber
	push	eax
	call	putchar
	pop	eax
	inc	ebp
	cmp	ebp, 19
	jae	.nextnumber
	mov	[dbuffer+ebp], al

.nextnumber:
	call	getchar
	jc	.work
	cmp	al, '#'
	je	.ungetc
	cmp	al, '0'
	jl	.work
	cmp	al, '9'
	ja	.work
	jmp	short .number

.ungetc:
	dec	esi
	inc	ebx

.work:
	; Now, do all the work
	or	dl, dl
	je	near .work0

	cmp	ebp, 19
	jae	near .toobig

	call	bcdload

	; Calculate pinhole diameter

	fld	st0	; save it
	fsqrt
	fmul	st0, st3
	fld	st0
	fmul	st5
	sub	ebp, ebp

	; Round off to 4 significant digits
.diameter:
	fcom	st0, st7
	fstsw	ax
	sahf
	jb	.printdiameter
	fmul	st0, st6
	inc	ebp
	jmp	short .diameter

.printdiameter:
	call	printnumber	; pinhole diameter

	; Calculate F-number

	fdivp	st1, st0
	fld	st0

	sub	ebp, ebp

.fnumber:
	fcom	st0, st6
	fstsw	ax
	sahf
	jb	.printfnumber
	fmul	st0, st5
	inc	ebp
	jmp	short .fnumber

.printfnumber:
	call	printnumber	; F number

	; Calculate normalized F-number
	fmul	st0, st0
	fld1
	fld	st1
	fyl2x
	frndint
	fld1
	fscale
	fsqrt
	fstp	st1

	sub	ebp, ebp
	call	printnumber

	; Calculate time multiplier from F-5.6

	fscale
	fld	st0

	; Round off to 4 significant digits
.fmul:
	fcom	st0, st6
	fstsw	ax
	sahf

	jb	.printfmul
	inc	ebp
	fmul	st0, st5
	jmp	short .fmul

.printfmul:
	call	printnumber	; F multiplier

	; Calculate F-stops from 5.6

	fld1
	fxch	st1
	fyl2x

	sub	ebp, ebp
	call	printnumber

	mov	al, 0Ah
	call	putchar
	jmp	.bigloop

.work0:
	mov	al, '0'
	call	putchar

align 4
.toobig:
	call	huh
	jmp	.bigloop

align 4
done:
	call	write		; flush output buffer

	; close files
	push	dword [fd.in]
	sys.close

	push	dword [fd.out]
	sys.close

	finit

	; return success
	push	dword 0
	sys.exit

align 4
skiptoeol:
	; Keep reading until you come to cr, lf, or eof
	call	getchar
	jc	done
	cmp	al, 0Ah
	jne	.cr
	ret

.cr:
	cmp	al, 0Dh
	jne	skiptoeol
	ret

align 4
getchar:
	or	ebx, ebx
	jne	.fetch

	call	read

.fetch:
	lodsb
	dec	ebx
	clc
	ret

read:
	jecxz	.read
	call	write

.read:
	push	dword BUFSIZE
	mov	esi, ibuffer
	push	esi
	push	dword [fd.in]
	sys.read
	add	esp, byte 12
	mov	ebx, eax
	or	eax, eax
	je	.empty
	sub	eax, eax
	ret

align 4
.empty:
	add	esp, byte 4
	stc
	ret

align 4
putchar:
	stosb
	inc	ecx
	cmp	ecx, BUFSIZE
	je	write
	ret

align 4
write:
	jecxz	.ret	; nothing to write
	sub	edi, ecx	; start of buffer
	push	ecx
	push	edi
	push	dword [fd.out]
	sys.write
	add	esp, byte 12
	sub	eax, eax
	sub	ecx, ecx	; buffer is empty now
.ret:
	ret

align 4
bcdload:
	; EBP contains the number of chars in dbuffer
	push	ecx
	push	esi
	push	edi

	lea	ecx, [ebp+1]
	lea	esi, [dbuffer+ebp-1]
	shr	ecx, 1

	std

	mov	edi, bbuffer
	sub	eax, eax
	mov	[edi], eax
	mov	[edi+4], eax
	mov	[edi+2], ax

.loop:
	lodsw
	sub	ax, 3030h
	shl	al, 4
	or	al, ah
	mov	[edi], al
	inc	edi
	loop	.loop

	fbld	[bbuffer]

	cld
	pop	edi
	pop	esi
	pop	ecx
	sub	eax, eax
	ret

align 4
printnumber:
	push	ebp
	mov	al, [separ]
	call	putchar

	; Print the integer at the TOS
	mov	ebp, bbuffer+9
	fbstp	[bbuffer]

	; Check the sign
	mov	al, [ebp]
	dec	ebp
	or	al, al
	jns	.leading

	; We got a negative number (should never happen)
	mov	al, '-'
	call	putchar

.leading:
	; Skip leading zeros
	mov	al, [ebp]
	dec	ebp
	or	al, al
	jne	.first
	cmp	ebp, bbuffer
	jae	.leading

	; We are here because the result was 0.
	; Print '0' and return
	mov	al, '0'
	jmp	putchar

.first:
	; We have found the first non-zero.
	; But it is still packed
	test	al, 0F0h
	jz	.second
	push	eax
	shr	al, 4
	add	al, '0'
	call	putchar
	pop	eax
	and	al, 0Fh

.second:
	add	al, '0'
	call	putchar

.next:
	cmp	ebp, bbuffer
	jb	.done

	mov	al, [ebp]
	push	eax
	shr	al, 4
	add	al, '0'
	call	putchar
	pop	eax
	and	al, 0Fh
	add	al, '0'
	call	putchar

	dec	ebp
	jmp	short .next

.done:
	pop	ebp
	or	ebp, ebp
	je	.ret

.zeros:
	mov	al, '0'
	call	putchar
	dec	ebp
	jne	.zeros

.ret:
	ret

The code follows the same format as all the other
filters we have seen before, with one subtle
exception:

We are no longer assuming that the end of input
implies the end of things to do, something we
took for granted in the character–oriented
filters.

This filter does not process characters. It
processes a language
(albeit a very simple
one, consisting only of numbers).

When we have no more input, it can mean one
of two things:
	
We are done and can quit. This is the
same as before.

	
The last character we have read was a digit.
We have stored it at the end of our
ASCII–to–float conversion
buffer. We now need to convert
the contents of that buffer into a
number and write the last line of our
output.

For that reason, we have modified our getchar
and our read routines to return with
the carry flag clear whenever we are
fetching another character from the input, or the
carry flag set whenever there is no more
input.

Of course, we are still using assembly language magic
to do that! Take a good look at getchar.
It always returns with the
carry flag clear.

Yet, our main code relies on the carry
flag to tell it when to quit——and it works.

The magic is in read. Whenever it
receives more input from the system, it just
returns to getchar, which
fetches a character from the input buffer,
clears the carry flag
and returns.

But when read receives no more
input from the system, it does not
return to getchar at all.
Instead, the add esp, byte 4
op code adds 4 to ESP,
sets the carry
flag, and returns.

So, where does it return to? Whenever a
program uses the call op code,
the microprocessor pushes the
return address, i.e., it stores it on
the top of the stack (not the FPU
stack, the system stack, which is in the memory).
When a program uses the ret
op code, the microprocessor pops
the return value from the stack, and jumps
to the address that was stored there.

But since we added 4 to
ESP (which is the stack
pointer register), we have effectively
given the microprocessor a minor case
of amnesia: It no longer
remembers it was getchar
that called read.

And since getchar never
pushed anything before
calling read,
the top of the stack now contains the
return address to whatever or whoever
called getchar.
As far as that caller is concerned,
he called getchar,
which returned with the
carry flag set!

Other than that, the bcdload
routine is caught up in the middle of a
Lilliputian conflict between the Big–Endians
and the Little–Endians.

It is converting the text representation
of a number into that number: The text
is stored in the big–endian order, but
the packed decimal is little–endian.

To solve the conflict, we use the std
op code early on. We cancel it with cld
later on: It is quite important we do not
call anything that may depend on
the default setting of the direction
flag while std is active.

Everything else in this code should be quite
clear, providing you have read the entire chapter
that precedes it.

It is a classical example of the adage that
programming requires a lot of thought and only
a little coding. Once we have thought through every
tiny detail, the code almost writes itself.

10.13.6. Using pinhole

Because we have decided to make the program
ignore any input except for numbers
(and even those inside a comment), we can
actually perform textual queries.
We do not have to, but we can.

In my humble opinion, forming a textual query,
instead of having to follow a very strict
syntax, makes software much more user friendly.

Suppose we want to build a pinhole camera to use the
4x5 inch film. The standard focal
length for that film is about 150mm. We want
to fine–tune our focal length so the
pinhole diameter is as round a number as possible.
Let us also suppose we are quite comfortable with
cameras but somewhat intimidated by computers.
Rather than just have to type in a bunch of numbers,
we want to ask a couple of questions.

Our session might look like this:
% pinhole

Computer,

What size pinhole do I need for the focal length of 150?
150	490	306	362	2930	12
Hmmm... How about 160?
160	506	316	362	3125	12
Let's make it 155, please.
155	498	311	362	3027	12
Ah, let's try 157...
157	501	313	362	3066	12
156?
156	500	312	362	3047	12
That's it! Perfect! Thank you very much!
^D

We have found that while for the focal length
of 150, our pinhole diameter should be 490
microns, or 0.49 mm, if we go with the almost
identical focal length of 156 mm, we can
get away with a pinhole diameter of exactly
one half of a millimeter.

10.13.7. Scripting

Because we have chosen the #
character to denote the start of a comment,
we can treat our pinhole
software as a scripting language.

You have probably seen shell
scripts that start with:

#! /bin/sh

...or...

#!/bin/sh

...because the blank space after the #!
is optional.

Whenever UNIX® is asked to run an executable
file which starts with the #!,
it assumes the file is a script. It adds the
command to the rest of the first line of the
script, and tries to execute that.

Suppose now that we have installed pinhole
in /usr/local/bin/, we can now
write a script to calculate various pinhole
diameters suitable for various focal lengths
commonly used with the 120 film.

The script might look something like this:

#! /usr/local/bin/pinhole -b -i
Find the best pinhole diameter
for the 120 film

Standard
80

Wide angle
30, 40, 50, 60, 70

Telephoto
100, 120, 140

Because 120 is a medium size film,
we may name this file medium.

We can set its permissions to execute,
and run it as if it were a program:

% chmod 755 medium
% ./medium

UNIX® will interpret that last command as:
% /usr/local/bin/pinhole -b -i ./medium

It will run that command and display:

80	358	224	256	1562	11
30	219	137	128	586	9
40	253	158	181	781	10
50	283	177	181	977	10
60	310	194	181	1172	10
70	335	209	181	1367	10
100	400	250	256	1953	11
120	438	274	256	2344	11
140	473	296	256	2734	11

Now, let us enter:
% ./medium -c

UNIX® will treat that as:
% /usr/local/bin/pinhole -b -i ./medium -c

That gives it two conflicting options:
-b and -c
(Use Bender's constant and use Connors'
constant). We have programmed it so
later options override early ones——our
program will calculate everything
using Connors' constant:

80	331	242	256	1826	11
30	203	148	128	685	9
40	234	171	181	913	10
50	262	191	181	1141	10
60	287	209	181	1370	10
70	310	226	256	1598	11
100	370	270	256	2283	11
120	405	296	256	2739	11
140	438	320	362	3196	12

We decide we want to go with Bender's
constant after all. We want to save its
values as a comma–separated file:

% ./medium -b -e > bender
% cat bender
focal length in millimeters,pinhole diameter in microns,F-number,normalized F-number,F-5.6 multiplier,stops from F-5.6
80,358,224,256,1562,11
30,219,137,128,586,9
40,253,158,181,781,10
50,283,177,181,977,10
60,310,194,181,1172,10
70,335,209,181,1367,10
100,400,250,256,1953,11
120,438,274,256,2344,11
140,473,296,256,2734,11
%
10.14. Caveats

Assembly language programmers who "grew up" under
MS-DOS® and Windows® often tend to take shortcuts.
Reading the keyboard scan codes and writing directly to video
memory are two classical examples of practices which, under
MS-DOS® are not frowned upon but considered the
right thing to do.

The reason? Both the PC BIOS and
MS-DOS® are notoriously
slow when performing these operations.

You may be tempted to continue similar practices in the
UNIX® environment. For example, I have seen a web site which
explains how to access the keyboard scan codes on a popular UNIX® clone.

That is generally a very bad idea
in UNIX® environment! Let me explain why.

10.14.1. UNIX® Is Protected

For one thing, it may simply not be possible. UNIX® runs in
protected mode. Only the kernel and device drivers are allowed
to access hardware directly. Perhaps a particular UNIX® clone
will let you read the keyboard scan codes, but chances are a real
UNIX® operating system will not. And even if one version may let you
do it, the next one may not, so your carefully crafted software may
become a dinosaur overnight.

10.14.2. UNIX® Is an Abstraction

But there is a much more important reason not to try
accessing the hardware directly (unless, of course,
you are writing a device driver), even on the UNIX® like
systems that let you do it:

UNIX® is an abstraction!

There is a major difference in the philosophy of design
between MS-DOS® and UNIX®.
MS-DOS® was designed as a single-user
system. It is run on a computer with a keyboard and a video
screen attached directly to that computer. User input is almost
guaranteed to come from that keyboard. Your program's output
virtually always ends up on that screen.

This is NEVER guaranteed under UNIX®. It is quite common
for a UNIX® user to pipe and redirect program input and output:

% program1 | program2 | program3 > file1

If you have written program2, your input
does not come from the keyboard but from the output of
program1. Similarly, your output does not
go to the screen but becomes the input for
program3 whose output, in turn,
goes to file1.

But there is more! Even if you made sure that your input comes
from, and your output goes to, the terminal, there is no guarantee
the terminal is a PC: It may not have its video memory
where you expect it, nor may its keyboard be producing
PC-style scan codes. It may be a Macintosh®,
or any other computer.

Now you may be shaking your head: My software is in
PC assembly language, how can
it run on a Macintosh®? But I did not say your software
would be running on a Macintosh®, only that its terminal
may be a Macintosh®.

Under UNIX®, the terminal does not have to be directly
attached to the computer that runs your software, it can
even be on another continent, or, for that matter, on another
planet. It is perfectly possible that a Macintosh® user in
Australia connects to a UNIX® system in North America (or
anywhere else) via telnet. The
software then runs on one computer, while the terminal is
on a different computer: If you try to read the scan codes,
you will get the wrong input!

Same holds true about any other hardware: A file you are reading
may be on a disk you have no direct access to. A camera you are
reading images from may be on a space shuttle, connected to you
via satellites.

That is why under UNIX® you must never make any assumptions about
where your data is coming from and going to. Always let the
system handle the physical access to the hardware.

注意:

These are caveats, not absolute rules. Exceptions are possible.
For example, if a text editor has determined it is running
on a local machine, it may want to read the scan codes
directly for improved control. I am not mentioning these caveats
to tell you what to do or what not to do, just to make you aware
of certain pitfalls that await you if you have just arrived to UNIX®
form MS-DOS®. Of course, creative people often break
rules, and it is OK as long as they know they are breaking
them and why.

10.15. Acknowledgements

This tutorial would never have been possible without the
help of many experienced FreeBSD programmers from the
FreeBSD technical discussions 郵遞論壇, many of whom have patiently
answered my questions, and pointed me in the right direction
in my attempts to explore the inner workings of UNIX®
system programming in general and FreeBSD in particular.

Thomas M. Sommers opened the door for me. His
How
do I write "Hello, world" in FreeBSD assembler?
web page was my first encounter with an example of
assembly language programming under FreeBSD.

Jake Burkholder has kept the door open by willingly
answering all of my questions and supplying me with
example assembly language source code.

Copyright © 2000-2001 G. Adam Stanislav. All rights reserved.

部 V. 附錄

參考文獻
[1] Dave A Patterson 且 John L Hennessy. 版權 © 1998 Morgan Kaufmann Publishers,
 Inc.. 1-55860-428-6. Morgan Kaufmann Publishers, Inc.. Computer Organization and Design. The Hardware / Software Interface. 1-2.

[2] W. Richard Stevens. 版權 © 1993 Addison Wesley Longman,
 Inc.. 0-201-56317-7. Addison Wesley Longman, Inc.. Advanced Programming in the Unix Environment. 1-2.

[3] Marshall Kirk McKusick, Keith Bostic, Michael J Karels, 且 John S Quarterman. 版權 © 1996 Addison-Wesley Publishing Company,
 Inc.. 0-201-54979-4. Addison-Wesley Publishing Company, Inc.. The Design and Implementation of the 4.4 BSD Operating System. 1-2.

[4] Aleph One. Phrack 49; "Smashing the Stack for Fun and Profit".

[5] Chrispin Cowan, Calton Pu, 且 Dave Maier. StackGuard; Automatic Adaptive Detection and Prevention of
 Buffer-Overflow Attacks.

[6] Todd Miller 且 Theo de Raadt. strlcpy and strlcat -- consistent, safe string copy and
	concatenation..

索引
A
	arguments, Buffer Overflows
	

B
	bounds checking
		compiler-based, Compiler based run-time bounds checking
	
	library-based, Library based run-time bounds checking
	

	buffer overflow, Buffer Overflows, Compiler based run-time bounds checking
	

C
	CERT
		security advisories, Buffer Overflows
	

	chroot(), Limiting your program's environment
	
	contributed software, Contributed Software
	
	core team, Encumbered Files
	

D
	data validation, Trust
	

F
	frame pointer, Buffer Overflows
	

G
	gcc, Compiler based run-time bounds checking
	
	GTK, Programming I18N Compliant Applications
	

J
	jail, FreeBSD's jail functionality
	

L
	LIFO, Buffer Overflows
	

M
	Morris Internet worm, Buffer Overflows
	

N
	NUL termination, Avoiding Buffer Overflows
	

O
	OpenBSD, Avoiding Buffer Overflows
	

P
	Perl, Perl and Python
	
	Perl Taint mode, Trust
	
	ports maintainer, MAINTAINER on Makefiles
	
	positive filtering, Trust
	
	POSIX.1e Process Capabilities, POSIX®.1e Process Capabilities
	
	process image
		frame pointer, Buffer Overflows
	
	stack pointer, Buffer Overflows
	

	Python, Perl and Python
	

Q
	Qt, Programming I18N Compliant Applications
	

R
	race conditions
		access checks, Race Conditions
	
	file opens, Race Conditions
	
	signals, Race Conditions
	

	release engineer, Encumbered Files
	
	return address, Buffer Overflows
	

S
	seteuid, SetUID issues
	
	stack, Buffer Overflows
	
	stack frame, Buffer Overflows
	
	stack pointer, Buffer Overflows
	
	stack-overflow, Buffer Overflows
	
	StackGuard, Compiler based run-time bounds checking
	
	string copy functions
		strlcat, Avoiding Buffer Overflows
	
	strlcpy, Avoiding Buffer Overflows
	
	strncat, Avoiding Buffer Overflows
	
	strncpy, Avoiding Buffer Overflows
	

T
	TrustedBSD, POSIX®.1e Process Capabilities
	

U
	user IDs
		effective user ID, SetUID issues
	
	real user ID, SetUID issues
	

V
	Von-Neuman, Buffer Overflows
	

OEBPS/legalnotice.xhtml
Copyright

Redistribution and use in source (XML DocBook) and 'compiled'
 forms (XML, HTML, PDF, PostScript, RTF and so forth) with or without
 modification, are permitted provided that the following conditions are
 met:

		Redistributions of source code (XML DocBook) must retain the
 above copyright notice, this list of conditions and the following
 disclaimer as the first lines of this file unmodified.

		Redistributions in compiled form (transformed to other DTDs,
 converted to PDF, PostScript, RTF and other formats) must
 reproduce the above copyright notice, this list of conditions and
 the following disclaimer in the documentation and/or other
 materials provided with the distribution.

重要:

THIS DOCUMENTATION IS PROVIDED BY THE FREEBSD DOCUMENTATION
 PROJECT "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
 BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
 FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
 THE FREEBSD DOCUMENTATION PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT,
 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
 TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
 DAMAGE.

OEBPS/trademarks.xhtml
FreeBSD 是 FreeBSD基金會的註冊商標

Apple, AirPort, FireWire, Mac, Macintosh, Mac OS,
 Quicktime, 以及 TrueType 是 Apple Computer, Inc. 在美國以及其他國家的註冊商標。

IBM, AIX, OS/2, PowerPC, PS/2, S/390, 和 ThinkPad 是
 國際商用機器公司在美國和其他國家的註冊商標或商標。

IEEE, POSIX, 和 802 是 Institute of Electrical and Electronics Engineers,
 Inc. 在美國的註冊商標。

Intel, Celeron, EtherExpress, i386,
 i486, Itanium, Pentium, 和 Xeon 是 Intel Corporation
 及其分支機構在美國和其他國家的商標或註冊商標。

Linux 是 Linus Torvalds 的註冊商標。

Microsoft, IntelliMouse, MS-DOS,
 Outlook, Windows, Windows Media, 和 Windows NT 是 Microsoft Corporation
 在美國和/或其他國家的商標或註冊商標。

Motif, OSF/1, 和 UNIX
 是 The Open Group 在美國和其他國家的註冊商標； IT DialTone 和 The Open Group
 是其商標。

Sun, Sun Microsystems, Java, Java Virtual Machine, JDK, JSP, JVM, Netra, Solaris, StarOffice
 和 SunOS 是
 Sun Microsystems, Inc. 在美國和其他國家的商標或註冊商標。

許多製造商和經銷商使用一些稱為商標的圖案或文字設計來彰顯自己的產品。
 本文中出現的眾多商標，以及 FreeBSD Project 本身廣所人知的商標，後面將以 '™' 或 '®' 符號來標註。

