Pluggable Authentication Modules
Table of Contents
	1. Introduction
	2. Terms and Conventions	2.1. Definitions
	2.2. Usage Examples	2.2.1. Client and Server Are One
	2.2.2. Client and Server Are Separate
	2.2.3. Sample Policy

	3. PAM Essentials	3.1. Facilities and
	Primitives
	3.2. Modules	3.2.1. Module Naming
	3.2.2. Module
	 Versioning

	3.3. Chains and
	Policies
	3.4. Transactions

	4. PAM Configuration	4.1. PAM Policy Files	4.1.1. The
	 /etc/pam.conf
	4.1.2. The
	 /etc/pam.d
	4.1.3. The Policy Search
	 Order

	4.2. Breakdown of a
	Configuration Line
	4.3. Policies

	5. FreeBSD PAM
 Modules	5.1. pam_deny(8)
	5.2. pam_echo(8)
	5.3. pam_exec(8)
	5.4. pam_ftpusers(8)
	5.5. pam_group(8)
	5.6. pam_guest(8)
	5.7. pam_krb5(8)
	5.8. pam_ksu(8)
	5.9. pam_lastlog(8)
	5.10. pam_login_access(8)
	5.11. pam_nologin(8)
	5.12. pam_opie(8)
	5.13. pam_opieaccess(8)
	5.14. pam_passwdqc(8)
	5.15. pam_permit(8)
	5.16. pam_radius(8)
	5.17. pam_rhosts(8)
	5.18. pam_rootok(8)
	5.19. pam_securetty(8)
	5.20. pam_self(8)
	5.21. pam_ssh(8)
	5.22. pam_tacplus(8)
	5.23. pam_unix(8)

	6. PAM Application
 Programming
	7. PAM Module
 Programming
	A. Sample PAM
 Application
	B. Sample PAM Module
	C. Sample PAM Conversation
 Function
	Further Reading

List of Tables
	1. PAM Chain Execution Summary

Pluggable Authentication Modules
Dag-Erling Smørgrav
Contributed by

Revision: 52137Copyright © 2001-2003 Networks Associates Technology, Inc.
Legal NoticeLegal NoticeAbstract
This article describes the underlying principles and
	mechanisms of the Pluggable Authentication Modules (PAM)
	library, and explains how to configure PAM, how to integrate
	PAM into applications, and how to write PAM modules.

 [

	 Split HTML
	
 /
 Single HTML
]
 1. Introduction
The Pluggable Authentication Modules (PAM) library is a
 generalized API for authentication-related services which allows
 a system administrator to add new authentication methods simply
 by installing new PAM modules, and to modify authentication
 policies by editing configuration files.
PAM was defined and developed in 1995 by Vipin Samar and
 Charlie Lai of Sun Microsystems, and has not changed much since.
 In 1997, the Open Group published the X/Open Single Sign-on
 (XSSO) preliminary specification, which standardized the PAM API
 and added extensions for single (or rather integrated) sign-on.
 At the time of this writing, this specification has not yet been
 adopted as a standard.
Although this article focuses primarily on FreeBSD 5.x,
 which uses OpenPAM, it should be equally applicable to FreeBSD
 4.x, which uses Linux-PAM, and other operating systems such as
 Linux and Solaris™.
2. Terms and Conventions
2.1. Definitions
The terminology surrounding PAM is rather confused.
	Neither Samar and Lai's original paper nor the XSSO
	specification made any attempt at formally defining terms for
	the various actors and entities involved in PAM, and the terms
	that they do use (but do not define) are sometimes misleading
	and ambiguous. The first attempt at establishing a consistent
	and unambiguous terminology was a whitepaper written by Andrew
	G. Morgan (author of Linux-PAM) in 1999. While Morgan's
	choice of terminology was a huge leap forward, it is in this
	author's opinion by no means perfect. What follows is an
	attempt, heavily inspired by Morgan, to define precise and
	unambiguous terms for all actors and entities involved in
	PAM.
	account
	The set of credentials the applicant is requesting
	 from the arbitrator.

	applicant
	The user or entity requesting authentication.

	arbitrator
	The user or entity who has the privileges necessary
	 to verify the applicant's credentials and the authority
	 to grant or deny the request.

	chain
	A sequence of modules that will be invoked in
	 response to a PAM request. The chain includes
	 information about the order in which to invoke the
	 modules, what arguments to pass to them, and how to
	 interpret the results.

	client
	The application responsible for initiating an
	 authentication request on behalf of the applicant and
	 for obtaining the necessary authentication information
	 from him.

	facility
	One of the four basic groups of functionality
	 provided by PAM: authentication, account management,
	 session management and authentication token
	 update.

	module
	A collection of one or more related functions
	 implementing a particular authentication facility,
	 gathered into a single (normally dynamically loadable)
	 binary file and identified by a single name.

	policy
	The complete set of configuration statements
	 describing how to handle PAM requests for a particular
	 service. A policy normally consists of four chains, one
	 for each facility, though some services do not use all
	 four facilities.

	server
	The application acting on behalf of the arbitrator
	 to converse with the client, retrieve authentication
	 information, verify the applicant's credentials and
	 grant or deny requests.

	service
	A class of servers providing similar or related
	 functionality and requiring similar authentication. PAM
	 policies are defined on a per-service basis, so all
	 servers that claim the same service name will be subject
	 to the same policy.

	session
	The context within which service is rendered to the
	 applicant by the server. One of PAM's four facilities,
	 session management, is concerned exclusively with
	 setting up and tearing down this context.

	token
	A chunk of information associated with the account,
	 such as a password or passphrase, which the applicant
	 must provide to prove his identity.

	transaction
	A sequence of requests from the same applicant to
	 the same instance of the same server, beginning with
	 authentication and session set-up and ending with
	 session tear-down.

2.2. Usage Examples
This section aims to illustrate the meanings of some of
	the terms defined above by way of a handful of simple
	examples.
2.2.1. Client and Server Are One
This simple example shows alice
	 su(1)'ing to root.
% whoami
alice
% ls -l `which su`
-r-sr-xr-x 1 root wheel 10744 Dec 6 19:06 /usr/bin/su
% su -
Password: xi3kiune
whoami
root
	The applicant is alice.

	The account is root.

	The su(1) process is both client and
	 server.

	The authentication token is
	 xi3kiune.

	The arbitrator is root, which is
	 why su(1) is setuid root.

2.2.2. Client and Server Are Separate
The example below shows eve try to
	 initiate an ssh(1) connection to
	 login.example.com, ask to log in as
	 bob, and succeed. Bob should have chosen
	 a better password!
% whoami
eve
% ssh bob@login.example.com
bob@login.example.com's password: god
Last login: Thu Oct 11 09:52:57 2001 from 192.168.0.1
Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994
	The Regents of the University of California. All rights reserved.
FreeBSD 4.4-STABLE (LOGIN) #4: Tue Nov 27 18:10:34 PST 2001

Welcome to FreeBSD!
%
	The applicant is eve.

	The client is Eve's ssh(1) process.

	The server is the sshd(8) process on
	 login.example.com

	The account is bob.

	The authentication token is
	 god.

	Although this is not shown in this example, the
	 arbitrator is root.

2.2.3. Sample Policy
The following is FreeBSD's default policy for
	 sshd:
sshd	auth		required	pam_nologin.so	no_warn
sshd	auth		required	pam_unix.so	no_warn try_first_pass
sshd	account		required	pam_login_access.so
sshd	account		required	pam_unix.so
sshd	session		required	pam_lastlog.so	no_fail
sshd	password	required	pam_permit.so
	This policy applies to the sshd
	 service (which is not necessarily restricted to the
	 sshd(8) server.)

	auth, account,
	 session and
	 password are facilities.

	pam_nologin.so,
	 pam_unix.so,
	 pam_login_access.so,
	 pam_lastlog.so and
	 pam_permit.so are modules. It is
	 clear from this example that
	 pam_unix.so provides at least two
	 facilities (authentication and account
	 management.)

3. PAM Essentials
3.1. Facilities and
	Primitives
The PAM API offers six different authentication primitives
	grouped in four facilities, which are described below.
	auth
	Authentication. This facility
	 concerns itself with authenticating the applicant and
	 establishing the account credentials. It provides two
	 primitives:
	pam_authenticate(3) authenticates the
		 applicant, usually by requesting an authentication
		 token and comparing it with a value stored in a
		 database or obtained from an authentication
		 server.

	pam_setcred(3) establishes account
		 credentials such as user ID, group membership and
		 resource limits.

	account
	Account management. This
	 facility handles non-authentication-related issues of
	 account availability, such as access restrictions based
	 on the time of day or the server's work load. It
	 provides a single primitive:
	pam_acct_mgmt(3) verifies that the
		 requested account is available.

	session
	Session management. This
	 facility handles tasks associated with session set-up
	 and tear-down, such as login accounting. It provides
	 two primitives:
	pam_open_session(3) performs tasks
		 associated with session set-up: add an entry in the
		 utmp and
		 wtmp databases, start an SSH
		 agent, etc.

	pam_close_session(3) performs tasks
		 associated with session tear-down: add an entry in
		 the utmp and
		 wtmp databases, stop the SSH
		 agent, etc.

	password
	Password management. This
	 facility is used to change the authentication token
	 associated with an account, either because it has
	 expired or because the user wishes to change it. It
	 provides a single primitive:
	pam_chauthtok(3) changes the authentication
		 token, optionally verifying that it is sufficiently
		 hard to guess, has not been used previously,
		 etc.

3.2. Modules
Modules are a very central concept in PAM; after all,
	they are the “M” in “PAM”. A PAM
	module is a self-contained piece of program code that
	implements the primitives in one or more facilities for one
	particular mechanism; possible mechanisms for the
	authentication facility, for instance, include the UNIX®
	password database, NIS, LDAP and Radius.
3.2.1. Module Naming
FreeBSD implements each mechanism in a single module,
	 named
	 pam_mechanism.so
	 (for instance, pam_unix.so for the UNIX®
	 mechanism.) Other implementations sometimes have separate
	 modules for separate facilities, and include the facility
	 name as well as the mechanism name in the module name. To
	 name one example, Solaris™ has a
	 pam_dial_auth.so.1 module which is
	 commonly used to authenticate dialup users.
3.2.2. Module
	 Versioning
FreeBSD's original PAM implementation, based on
	 Linux-PAM, did not use version numbers for PAM modules.
	 This would commonly cause problems with legacy applications,
	 which might be linked against older versions of the system
	 libraries, as there was no way to load a matching version of
	 the required modules.
OpenPAM, on the other hand, looks for modules that have
	 the same version number as the PAM library (currently 2),
	 and only falls back to an unversioned module if no versioned
	 module could be loaded. Thus legacy modules can be provided
	 for legacy applications, while allowing new (or newly built)
	 applications to take advantage of the most recent
	 modules.
Although Solaris™ PAM modules commonly have a version
	 number, they are not truly versioned, because the number is
	 a part of the module name and must be included in the
	 configuration.
3.3. Chains and
	Policies
When a server initiates a PAM transaction, the PAM library
	tries to load a policy for the service specified in the
	pam_start(3) call. The policy specifies how
	authentication requests should be processed, and is defined in
	a configuration file. This is the other central concept in
	PAM: the possibility for the admin to tune the system security
	policy (in the wider sense of the word) simply by editing a
	text file.
A policy consists of four chains, one for each of the four
	PAM facilities. Each chain is a sequence of configuration
	statements, each specifying a module to invoke, some
	(optional) parameters to pass to the module, and a control
	flag that describes how to interpret the return code from the
	module.
Understanding the control flags is essential to
	understanding PAM configuration files. There are four
	different control flags:
	binding
	If the module succeeds and no earlier module in the
	 chain has failed, the chain is immediately terminated
	 and the request is granted. If the module fails, the
	 rest of the chain is executed, but the request is
	 ultimately denied.
This control flag was introduced by Sun in Solaris™
	 9 (SunOS™ 5.9), and is also supported by
	 OpenPAM.

	required
	If the module succeeds, the rest of the chain is
	 executed, and the request is granted unless some other
	 module fails. If the module fails, the rest of the
	 chain is also executed, but the request is ultimately
	 denied.

	requisite
	If the module succeeds, the rest of the chain is
	 executed, and the request is granted unless some other
	 module fails. If the module fails, the chain is
	 immediately terminated and the request is denied.

	sufficient
	If the module succeeds and no earlier module in the
	 chain has failed, the chain is immediately terminated
	 and the request is granted. If the module fails, the
	 module is ignored and the rest of the chain is
	 executed.
As the semantics of this flag may be somewhat
	 confusing, especially when it is used for the last
	 module in a chain, it is recommended that the
	 binding control flag be used instead
	 if the implementation supports it.

	optional
	The module is executed, but its result is ignored.
	 If all modules in a chain are marked
	 optional, all requests will always be
	 granted.

When a server invokes one of the six PAM primitives, PAM
	retrieves the chain for the facility the primitive belongs to,
	and invokes each of the modules listed in the chain, in the
	order they are listed, until it reaches the end, or determines
	that no further processing is necessary (either because a
	binding or
	sufficient module succeeded, or because a
	requisite module failed.) The request is
	granted if and only if at least one module was invoked, and
	all non-optional modules succeeded.
Note that it is possible, though not very common, to have
	the same module listed several times in the same chain. For
	instance, a module that looks up user names and passwords in a
	directory server could be invoked multiple times with
	different parameters specifying different directory servers to
	contact. PAM treat different occurrences of the same module
	in the same chain as different, unrelated modules.
3.4. Transactions
The lifecycle of a typical PAM transaction is described
	below. Note that if any of these steps fails, the server
	should report a suitable error message to the client and abort
	the transaction.
	If necessary, the server obtains arbitrator
	 credentials through a mechanism independent of
	 PAM—most commonly by virtue of having been started
	 by root, or of being setuid
	 root.

	The server calls pam_start(3) to initialize the
	 PAM library and specify its service name and the target
	 account, and register a suitable conversation
	 function.

	The server obtains various information relating to the
	 transaction (such as the applicant's user name and the
	 name of the host the client runs on) and submits it to PAM
	 using pam_set_item(3).

	The server calls pam_authenticate(3) to
	 authenticate the applicant.

	The server calls pam_acct_mgmt(3) to verify that
	 the requested account is available and valid. If the
	 password is correct but has expired, pam_acct_mgmt(3)
	 will return PAM_NEW_AUTHTOK_REQD
	 instead of PAM_SUCCESS.

	If the previous step returned
	 PAM_NEW_AUTHTOK_REQD, the server now
	 calls pam_chauthtok(3) to force the client to change
	 the authentication token for the requested account.

	Now that the applicant has been properly
	 authenticated, the server calls pam_setcred(3) to
	 establish the credentials of the requested account. It is
	 able to do this because it acts on behalf of the
	 arbitrator, and holds the arbitrator's credentials.

	Once the correct credentials have been established,
	 the server calls pam_open_session(3) to set up the
	 session.

	The server now performs whatever service the client
	 requested—for instance, provide the applicant with a
	 shell.

	Once the server is done serving the client, it calls
	 pam_close_session(3) to tear down the session.

	Finally, the server calls pam_end(3) to notify
	 the PAM library that it is done and that it can release
	 whatever resources it has allocated in the course of the
	 transaction.

4. PAM Configuration
4.1. PAM Policy Files
4.1.1. The
	 /etc/pam.conf
The traditional PAM policy file is
	 /etc/pam.conf. This file contains all
	 the PAM policies for your system. Each line of the file
	 describes one step in a chain, as shown below:
login auth required pam_nologin.so no_warn
The fields are, in order: service name, facility name,
	 control flag, module name, and module arguments. Any
	 additional fields are interpreted as additional module
	 arguments.
A separate chain is constructed for each service /
	 facility pair, so while the order in which lines for the
	 same service and facility appear is significant, the order
	 in which the individual services and facilities are listed
	 is not. The examples in the original PAM paper grouped
	 configuration lines by facility, and the Solaris™ stock
	 pam.conf still does that, but FreeBSD's
	 stock configuration groups configuration lines by service.
	 Either way is fine; either way makes equal sense.
4.1.2. The
	 /etc/pam.d
OpenPAM and Linux-PAM support an alternate configuration
	 mechanism, which is the preferred mechanism in FreeBSD. In
	 this scheme, each policy is contained in a separate file
	 bearing the name of the service it applies to. These files
	 are stored in /etc/pam.d/.
These per-service policy files have only four fields
	 instead of pam.conf's five: the service
	 name field is omitted. Thus, instead of the sample
	 pam.conf line from the previous
	 section, one would have the following line in
	 /etc/pam.d/login:
auth required pam_nologin.so no_warn
As a consequence of this simplified syntax, it is
	 possible to use the same policy for multiple services by
	 linking each service name to a same policy file. For
	 instance, to use the same policy for the
	 su and sudo services,
	 one could do as follows:
cd /etc/pam.d
ln -s su sudo
This works because the service name is determined from
	 the file name rather than specified in the policy file, so
	 the same file can be used for multiple differently-named
	 services.
Since each service's policy is stored in a separate
	 file, the pam.d mechanism also makes it
	 very easy to install additional policies for third-party
	 software packages.
4.1.3. The Policy Search
	 Order
As we have seen above, PAM policies can be found in a
	 number of places. What happens if policies for the same
	 service exist in multiple places?
It is essential to understand that PAM's configuration
	 system is centered on chains.
4.2. Breakdown of a
	Configuration Line
As explained in Section 4.1, “PAM Policy Files”, each
	line in /etc/pam.conf consists of four or
	more fields: the service name, the facility name, the control
	flag, the module name, and zero or more module
	arguments.
The service name is generally (though not always) the name
	of the application the statement applies to. If you are
	unsure, refer to the individual application's documentation to
	determine what service name it uses.
Note that if you use /etc/pam.d/
	instead of /etc/pam.conf, the service
	name is specified by the name of the policy file, and omitted
	from the actual configuration lines, which then start with the
	facility name.
The facility is one of the four facility keywords
	described in Section 3.1, “Facilities and
	Primitives”.
Likewise, the control flag is one of the four keywords
	described in Section 3.3, “Chains and
	Policies”, describing
	how to interpret the return code from the module. Linux-PAM
	supports an alternate syntax that lets you specify the action
	to associate with each possible return code, but this should
	be avoided as it is non-standard and closely tied in with the
	way Linux-PAM dispatches service calls (which differs greatly
	from the way Solaris™ and OpenPAM do it.) Unsurprisingly,
	OpenPAM does not support this syntax.
4.3. Policies
To configure PAM correctly, it is essential to understand
	how policies are interpreted.
When an application calls pam_start(3), the PAM
	library loads the policy for the specified service and
	constructs four module chains (one for each facility.) If one
	or more of these chains are empty, the corresponding chains
	from the policy for the other service are
	substituted.
When the application later calls one of the six PAM
	primitives, the PAM library retrieves the chain for the
	corresponding facility and calls the appropriate service
	function in each module listed in the chain, in the order in
	which they were listed in the configuration. After each call
	to a service function, the module type and the error code
	returned by the service function are used to determine what
	happens next. With a few exceptions, which we discuss below,
	the following table applies:
Table 1. PAM Chain Execution Summary
	 	PAM_SUCCESS	PAM_IGNORE	other
	binding	if (!fail) break;	-	fail = true;
	required	-	-	fail = true;
	requisite	-	-	fail = true; break;
	sufficient	if (!fail) break;	-	-
	optional	-	-	-

If fail is true at the end of a chain,
	or when a “break” is reached, the dispatcher
	returns the error code returned by the first module that
	failed. Otherwise, it returns
	PAM_SUCCESS.
The first exception of note is that the error code
	PAM_NEW_AUTHTOK_REQD is treated like a
	success, except that if no module failed, and at least one
	module returned PAM_NEW_AUTHTOK_REQD, the
	dispatcher will return
	PAM_NEW_AUTHTOK_REQD.
The second exception is that pam_setcred(3) treats
	binding and sufficient
	modules as if they were required.
The third and final exception is that
	pam_chauthtok(3) runs the entire chain twice (once for
	preliminary checks and once to actually set the password), and
	in the preliminary phase it treats binding
	and sufficient modules as if they were
	required.
5. FreeBSD PAM
 Modules
5.1. pam_deny(8)
The pam_deny(8) module is one of the simplest modules
	available; it responds to any request with
	PAM_AUTH_ERR. It is useful for quickly
	disabling a service (add it to the top of every chain), or for
	terminating chains of sufficient
	modules.
5.2. pam_echo(8)
The pam_echo(8) module simply passes its arguments to
	the conversation function as a
	PAM_TEXT_INFO message. It is mostly useful
	for debugging, but can also serve to display messages such as
	“Unauthorized access will be prosecuted” before
	starting the authentication procedure.
5.3. pam_exec(8)
The pam_exec(8) module takes its first argument to be
	the name of a program to execute, and the remaining arguments
	are passed to that program as command-line arguments. One
	possible application is to use it to run a program at login
	time which mounts the user's home directory.
5.4. pam_ftpusers(8)
The pam_ftpusers(8) module
5.5. pam_group(8)
The pam_group(8) module accepts or rejects applicants
	on the basis of their membership in a particular file group
	(normally wheel for su(1)). It is
	primarily intended for maintaining the traditional behavior of
	BSD su(1), but has many other uses, such as excluding
	certain groups of users from a particular service.
5.6. pam_guest(8)
The pam_guest(8) module allows guest logins using
	fixed login names. Various requirements can be placed on the
	password, but the default behavior is to allow any password as
	long as the login name is that of a guest account. The
	pam_guest(8) module can easily be used to implement
	anonymous FTP logins.
5.7. pam_krb5(8)
The pam_krb5(8) module
5.8. pam_ksu(8)
The pam_ksu(8) module
5.9. pam_lastlog(8)
The pam_lastlog(8) module
5.10. pam_login_access(8)
The pam_login_access(8) module provides an
	implementation of the account management primitive which
	enforces the login restrictions specified in the
	login.access(5) table.
5.11. pam_nologin(8)
The pam_nologin(8) module refuses non-root logins
	when /var/run/nologin exists. This file
	is normally created by shutdown(8) when less than five
	minutes remain until the scheduled shutdown time.
5.12. pam_opie(8)
The pam_opie(8) module implements the opie(4)
	authentication method. The opie(4) system is a
	challenge-response mechanism where the response to each
	challenge is a direct function of the challenge and a
	passphrase, so the response can be easily computed “just
	 in time” by anyone possessing the passphrase,
	eliminating the need for password lists. Moreover, since
	opie(4) never reuses a challenge that has been correctly
	answered, it is not vulnerable to replay attacks.
5.13. pam_opieaccess(8)
The pam_opieaccess(8) module is a companion module to
	pam_opie(8). Its purpose is to enforce the restrictions
	codified in opieaccess(5), which regulate the conditions
	under which a user who would normally authenticate herself
	using opie(4) is allowed to use alternate methods. This
	is most often used to prohibit the use of password
	authentication from untrusted hosts.
In order to be effective, the pam_opieaccess(8)
	module must be listed as requisite
	immediately after a sufficient entry for
	pam_opie(8), and before any other modules, in the
	auth chain.
5.14. pam_passwdqc(8)
The pam_passwdqc(8) module
5.15. pam_permit(8)
The pam_permit(8) module is one of the simplest
	modules available; it responds to any request with
	PAM_SUCCESS. It is useful as a placeholder
	for services where one or more chains would otherwise be
	empty.
5.16. pam_radius(8)
The pam_radius(8) module
5.17. pam_rhosts(8)
The pam_rhosts(8) module
5.18. pam_rootok(8)
The pam_rootok(8) module reports success if and only
	if the real user id of the process calling it (which is
	assumed to be run by the applicant) is 0. This is useful for
	non-networked services such as su(1) or passwd(1),
	to which the root should have automatic
	access.
5.19. pam_securetty(8)
The pam_securetty(8) module
5.20. pam_self(8)
The pam_self(8) module reports success if and only if
	the names of the applicant matches that of the target account.
	It is most useful for non-networked services such as
	su(1), where the identity of the applicant can be easily
	verified.
5.21. pam_ssh(8)
The pam_ssh(8) module provides both authentication
	and session services. The authentication service allows users
	who have passphrase-protected SSH secret keys in their
	~/.ssh directory to authenticate
	themselves by typing their passphrase. The session service
	starts ssh-agent(1) and preloads it with the keys that
	were decrypted in the authentication phase. This feature is
	particularly useful for local logins, whether in X (using
	xdm(1) or another PAM-aware X login manager) or at the
	console.
5.22. pam_tacplus(8)
The pam_tacplus(8) module
5.23. pam_unix(8)
The pam_unix(8) module implements traditional UNIX®
	password authentication, using getpwnam(3) to obtain the
	target account's password and compare it with the one provided
	by the applicant. It also provides account management
	services (enforcing account and password expiration times) and
	password-changing services. This is probably the single most
	useful module, as the great majority of admins will want to
	maintain historical behavior for at least some
	services.
6. PAM Application
 Programming
This section has not yet been written.
7. PAM Module
 Programming
This section has not yet been written.
A. Sample PAM
 Application
The following is a minimal implementation of su(1)
 using PAM. Note that it uses the OpenPAM-specific
 openpam_ttyconv(3) conversation function, which is
 prototyped in security/openpam.h. If you
 wish build this application on a system with a different PAM
 library, you will have to provide your own conversation
 function. A robust conversation function is surprisingly
 difficult to implement; the one presented in Appendix C, Sample PAM Conversation
 Function is a good starting point, but
 should not be used in real-world applications.
/*-
 * Copyright (c) 2002,2003 Networks Associates Technology, Inc.
 * All rights reserved.
 *
 * This software was developed for the FreeBSD Project by ThinkSec AS and
 * Network Associates Laboratories, the Security Research Division of
 * Network Associates, Inc. under DARPA/SPAWAR contract N66001-01-C-8035
 * ("CBOSS"), as part of the DARPA CHATS research program.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote
 * products derived from this software without specific prior written
 * permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * $P4: //depot/projects/openpam/bin/su/su.c#10 $
 * $FreeBSD: head/en_US.ISO8859-1/articles/pam/su.c 38826 2012-05-17 19:12:14Z hrs $
 */

#include <sys/param.h>
#include <sys/wait.h>

#include <err.h>
#include <pwd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <syslog.h>
#include <unistd.h>

#include <security/pam_appl.h>
#include <security/openpam.h>	/* for openpam_ttyconv() */

extern char **environ;

static pam_handle_t *pamh;
static struct pam_conv pamc;

static void
usage(void)
{

	fprintf(stderr, "Usage: su [login [args]]\n");
	exit(1);
}

int
main(int argc, char *argv[])
{
	char hostname[MAXHOSTNAMELEN];
	const char *user, *tty;
	char **args, **pam_envlist, **pam_env;
	struct passwd *pwd;
	int o, pam_err, status;
	pid_t pid;

	while ((o = getopt(argc, argv, "h")) != -1)
		switch (o) {
		case 'h':
		default:
			usage();
		}

	argc -= optind;
	argv += optind;

	if (argc > 0) {
		user = *argv;
		--argc;
		++argv;
	} else {
		user = "root";
	}

	/* initialize PAM */
	pamc.conv = &openpam_ttyconv;
	pam_start("su", user, &pamc, &pamh);

	/* set some items */
	gethostname(hostname, sizeof(hostname));
	if ((pam_err = pam_set_item(pamh, PAM_RHOST, hostname)) != PAM_SUCCESS)
		goto pamerr;
	user = getlogin();
	if ((pam_err = pam_set_item(pamh, PAM_RUSER, user)) != PAM_SUCCESS)
		goto pamerr;
	tty = ttyname(STDERR_FILENO);
	if ((pam_err = pam_set_item(pamh, PAM_TTY, tty)) != PAM_SUCCESS)
		goto pamerr;

	/* authenticate the applicant */
	if ((pam_err = pam_authenticate(pamh, 0)) != PAM_SUCCESS)
		goto pamerr;
	if ((pam_err = pam_acct_mgmt(pamh, 0)) == PAM_NEW_AUTHTOK_REQD)
		pam_err = pam_chauthtok(pamh, PAM_CHANGE_EXPIRED_AUTHTOK);
	if (pam_err != PAM_SUCCESS)
		goto pamerr;

	/* establish the requested credentials */
	if ((pam_err = pam_setcred(pamh, PAM_ESTABLISH_CRED)) != PAM_SUCCESS)
		goto pamerr;

	/* authentication succeeded; open a session */
	if ((pam_err = pam_open_session(pamh, 0)) != PAM_SUCCESS)
		goto pamerr;

	/* get mapped user name; PAM may have changed it */
	pam_err = pam_get_item(pamh, PAM_USER, (const void **)&user);
	if (pam_err != PAM_SUCCESS || (pwd = getpwnam(user)) == NULL)
		goto pamerr;

	/* export PAM environment */
	if ((pam_envlist = pam_getenvlist(pamh)) != NULL) {
		for (pam_env = pam_envlist; *pam_env != NULL; ++pam_env) {
			putenv(*pam_env);
			free(*pam_env);
		}
		free(pam_envlist);
	}

	/* build argument list */
	if ((args = calloc(argc + 2, sizeof *args)) == NULL) {
		warn("calloc()");
		goto err;
	}
	*args = pwd->pw_shell;
	memcpy(args + 1, argv, argc * sizeof *args);

	/* fork and exec */
	switch ((pid = fork())) {
	case -1:
		warn("fork()");
		goto err;
	case 0:
		/* child: give up privs and start a shell */

		/* set uid and groups */
		if (initgroups(pwd->pw_name, pwd->pw_gid) == -1) {
			warn("initgroups()");
			_exit(1);
		}
		if (setgid(pwd->pw_gid) == -1) {
			warn("setgid()");
			_exit(1);
		}
		if (setuid(pwd->pw_uid) == -1) {
			warn("setuid()");
			_exit(1);
		}
		execve(*args, args, environ);
		warn("execve()");
		_exit(1);
	default:
		/* parent: wait for child to exit */
		waitpid(pid, &status, 0);

		/* close the session and release PAM resources */
		pam_err = pam_close_session(pamh, 0);
		pam_end(pamh, pam_err);

		exit(WEXITSTATUS(status));
	}

pamerr:
	fprintf(stderr, "Sorry\n");
err:
	pam_end(pamh, pam_err);
	exit(1);
}

B. Sample PAM Module
The following is a minimal implementation of
 pam_unix(8), offering only authentication services. It
 should build and run with most PAM implementations, but takes
 advantage of OpenPAM extensions if available: note the use of
 pam_get_authtok(3), which enormously simplifies prompting
 the user for a password.
/*-
 * Copyright (c) 2002 Networks Associates Technology, Inc.
 * All rights reserved.
 *
 * This software was developed for the FreeBSD Project by ThinkSec AS and
 * Network Associates Laboratories, the Security Research Division of
 * Network Associates, Inc. under DARPA/SPAWAR contract N66001-01-C-8035
 * ("CBOSS"), as part of the DARPA CHATS research program.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote
 * products derived from this software without specific prior written
 * permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * $P4: //depot/projects/openpam/modules/pam_unix/pam_unix.c#3 $
 * $FreeBSD: head/en_US.ISO8859-1/articles/pam/pam_unix.c 38826 2012-05-17 19:12:14Z hrs $
 */

#include <sys/param.h>

#include <pwd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

#include <security/pam_modules.h>
#include <security/pam_appl.h>

#ifndef _OPENPAM
static char password_prompt[] = "Password:";
#endif

#ifndef PAM_EXTERN
#define PAM_EXTERN
#endif

PAM_EXTERN int
pam_sm_authenticate(pam_handle_t *pamh, int flags,
	int argc, const char *argv[])
{
#ifndef _OPENPAM
	struct pam_conv *conv;
	struct pam_message msg;
	const struct pam_message *msgp;
	struct pam_response *resp;
#endif
	struct passwd *pwd;
	const char *user;
	char *crypt_password, *password;
	int pam_err, retry;

	/* identify user */
	if ((pam_err = pam_get_user(pamh, &user, NULL)) != PAM_SUCCESS)
		return (pam_err);
	if ((pwd = getpwnam(user)) == NULL)
		return (PAM_USER_UNKNOWN);

	/* get password */
#ifndef _OPENPAM
	pam_err = pam_get_item(pamh, PAM_CONV, (const void **)&conv);
	if (pam_err != PAM_SUCCESS)
		return (PAM_SYSTEM_ERR);
	msg.msg_style = PAM_PROMPT_ECHO_OFF;
	msg.msg = password_prompt;
	msgp = &msg;
#endif
	for (retry = 0; retry < 3; ++retry) {
#ifdef _OPENPAM
		pam_err = pam_get_authtok(pamh, PAM_AUTHTOK,
		 (const char **)&password, NULL);
#else
		resp = NULL;
		pam_err = (*conv->conv)(1, &msgp, &resp, conv->appdata_ptr);
		if (resp != NULL) {
			if (pam_err == PAM_SUCCESS)
				password = resp->resp;
			else
				free(resp->resp);
			free(resp);
		}
#endif
		if (pam_err == PAM_SUCCESS)
			break;
	}
	if (pam_err == PAM_CONV_ERR)
		return (pam_err);
	if (pam_err != PAM_SUCCESS)
		return (PAM_AUTH_ERR);

	/* compare passwords */
	if ((!pwd->pw_passwd[0] && (flags & PAM_DISALLOW_NULL_AUTHTOK)) ||
	 (crypt_password = crypt(password, pwd->pw_passwd)) == NULL ||
	 strcmp(crypt_password, pwd->pw_passwd) != 0)
		pam_err = PAM_AUTH_ERR;
	else
		pam_err = PAM_SUCCESS;
#ifndef _OPENPAM
	free(password);
#endif
	return (pam_err);
}

PAM_EXTERN int
pam_sm_setcred(pam_handle_t *pamh, int flags,
	int argc, const char *argv[])
{

	return (PAM_SUCCESS);
}

PAM_EXTERN int
pam_sm_acct_mgmt(pam_handle_t *pamh, int flags,
	int argc, const char *argv[])
{

	return (PAM_SUCCESS);
}

PAM_EXTERN int
pam_sm_open_session(pam_handle_t *pamh, int flags,
	int argc, const char *argv[])
{

	return (PAM_SUCCESS);
}

PAM_EXTERN int
pam_sm_close_session(pam_handle_t *pamh, int flags,
	int argc, const char *argv[])
{

	return (PAM_SUCCESS);
}

PAM_EXTERN int
pam_sm_chauthtok(pam_handle_t *pamh, int flags,
	int argc, const char *argv[])
{

	return (PAM_SERVICE_ERR);
}

#ifdef PAM_MODULE_ENTRY
PAM_MODULE_ENTRY("pam_unix");
#endif

C. Sample PAM Conversation
 Function
The conversation function presented below is a greatly
 simplified version of OpenPAM's openpam_ttyconv(3). It is
 fully functional, and should give the reader a good idea of how
 a conversation function should behave, but it is far too simple
 for real-world use. Even if you are not using OpenPAM, feel
 free to download the source code and adapt
 openpam_ttyconv(3) to your uses; we believe it to be as
 robust as a tty-oriented conversation function can reasonably
 get.
/*-
 * Copyright (c) 2002 Networks Associates Technology, Inc.
 * All rights reserved.
 *
 * This software was developed for the FreeBSD Project by ThinkSec AS and
 * Network Associates Laboratories, the Security Research Division of
 * Network Associates, Inc. under DARPA/SPAWAR contract N66001-01-C-8035
 * ("CBOSS"), as part of the DARPA CHATS research program.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote
 * products derived from this software without specific prior written
 * permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * $FreeBSD: head/en_US.ISO8859-1/articles/pam/converse.c 38826 2012-05-17 19:12:14Z hrs $
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include <security/pam_appl.h>

int
converse(int n, const struct pam_message **msg,
	struct pam_response **resp, void *data)
{
	struct pam_response *aresp;
	char buf[PAM_MAX_RESP_SIZE];
	int i;

	data = data;
	if (n <= 0 || n > PAM_MAX_NUM_MSG)
		return (PAM_CONV_ERR);
	if ((aresp = calloc(n, sizeof *aresp)) == NULL)
		return (PAM_BUF_ERR);
	for (i = 0; i < n; ++i) {
		aresp[i].resp_retcode = 0;
		aresp[i].resp = NULL;
		switch (msg[i]->msg_style) {
		case PAM_PROMPT_ECHO_OFF:
			aresp[i].resp = strdup(getpass(msg[i]->msg));
			if (aresp[i].resp == NULL)
				goto fail;
			break;
		case PAM_PROMPT_ECHO_ON:
			fputs(msg[i]->msg, stderr);
			if (fgets(buf, sizeof buf, stdin) == NULL)
				goto fail;
			aresp[i].resp = strdup(buf);
			if (aresp[i].resp == NULL)
				goto fail;
			break;
		case PAM_ERROR_MSG:
			fputs(msg[i]->msg, stderr);
			if (strlen(msg[i]->msg) > 0 &&
			 msg[i]->msg[strlen(msg[i]->msg) - 1] != '\n')
				fputc('\n', stderr);
			break;
		case PAM_TEXT_INFO:
			fputs(msg[i]->msg, stdout);
			if (strlen(msg[i]->msg) > 0 &&
			 msg[i]->msg[strlen(msg[i]->msg) - 1] != '\n')
				fputc('\n', stdout);
			break;
		default:
			goto fail;
		}
	}
	*resp = aresp;
	return (PAM_SUCCESS);
 fail:
 for (i = 0; i < n; ++i) {
 if (aresp[i].resp != NULL) {
 memset(aresp[i].resp, 0, strlen(aresp[i].resp));
 free(aresp[i].resp);
 }
 }
 memset(aresp, 0, n * sizeof *aresp);
	*resp = NULL;
	return (PAM_CONV_ERR);
}

Further Reading
Papers

	 Making Login Services Independent of Authentication
	 Technologies. Vipin Samar and Charlie Lai. Sun Microsystems.

X/Open
	 Single Sign-on Preliminary
	 Specification. The Open Group. 1-85912-144-6. June 1997.

	 Pluggable Authentication Modules. Andrew G. Morgan. 1999-10-06.

User Manuals
PAM
	 Administration. Sun Microsystems.

Related Web Pages
OpenPAM
	 homepage. Dag-Erling Smørgrav. ThinkSec AS.

Linux-PAM
	 homepage. Andrew G. Morgan.

Solaris
	 PAM homepage. Sun Microsystems.

OEBPS/trademarks.xhtml
FreeBSD is a registered trademark of
 the FreeBSD Foundation.

Linux is a registered trademark of
 Linus Torvalds.

Motif, OSF/1, and UNIX are
 registered trademarks and IT DialTone and The Open Group are
 trademarks of The Open Group in the United States and other
 countries.

Sun, Sun Microsystems, Java, Java
 Virtual Machine, JDK, JRE, JSP, JVM, Netra, OpenJDK,
 Solaris, StarOffice, SunOS
 and VirtualBox are trademarks or registered trademarks of
 Sun Microsystems, Inc. in the United States and other countries.

Many of the designations used by
 manufacturers and sellers to distinguish their products are claimed
 as trademarks. Where those designations appear in this document,
 and the FreeBSD Project was aware of the trademark claim, the
 designations have been followed by the “™” or the
 “®” symbol.

OEBPS/pam-legalnotice.xhtml
This article was written for the FreeBSD Project by
	ThinkSec AS and Network Associates Laboratories, the Security
	Research Division of Network Associates, Inc. under
	DARPA/SPAWAR contract N66001-01-C-8035 (“CBOSS”),
	as part of the DARPA CHATS research program.

