.\" $NetBSD: BN_generate_prime.3,v 1.16 2017/01/27 23:00:47 spz Exp $ .\" .\" Automatically generated by Pod::Man 4.07 (Pod::Simple 3.32) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp .. .de Vb \" Begin verbatim text .ft CW .nf .ne \\$1 .. .de Ve \" End verbatim text .ft R .fi .. .\" Set up some character translations and predefined strings. \*(-- will .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left .\" double quote, and \*(R" will give a right double quote. \*(C+ will .\" give a nicer C++. Capital omega is used to do unbreakable dashes and .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff, .\" nothing in troff, for use with C<>. .tr \(*W- .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' .ie n \{\ . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} .el\{\ . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. .ie \n(.g .ds Aq \(aq .el .ds Aq ' .\" .\" If the F register is >0, we'll generate index entries on stderr for .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. .\" .\" Avoid warning from groff about undefined register 'F'. .de IX .. .if !\nF .nr F 0 .if \nF>0 \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{\ . nr % 0 . nr F 2 . \} .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. . \" fudge factors for nroff and troff .if n \{\ . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] \fP .\} .if t \{\ . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff .if n \{\ . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} .if t \{\ . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V' .ds 8 \h'\*(#H'\(*b\h'-\*(#H' .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#] .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H' .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u' .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#] .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#] .ds ae a\h'-(\w'a'u*4/10)'e .ds Ae A\h'-(\w'A'u*4/10)'E . \" corrections for vroff .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u' .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u' . \" for low resolution devices (crt and lpr) .if \n(.H>23 .if \n(.V>19 \ \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} .rm #[ #] #H #V #F C .\" ======================================================================== .\" .IX Title "BN_generate_prime 3" .TH BN_generate_prime 3 "2016-10-14" "1.0.2k" "OpenSSL" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l .nh .SH "NAME" BN_generate_prime_ex, BN_is_prime_ex, BN_is_prime_fasttest_ex, BN_GENCB_call, BN_GENCB_set_old, BN_GENCB_set, BN_generate_prime, BN_is_prime, BN_is_prime_fasttest \- generate primes and test for primality .SH "LIBRARY" libcrypto, -lcrypto .SH "SYNOPSIS" .IX Header "SYNOPSIS" .Vb 1 \& #include \& \& int BN_generate_prime_ex(BIGNUM *ret,int bits,int safe, const BIGNUM *add, \& const BIGNUM *rem, BN_GENCB *cb); \& \& int BN_is_prime_ex(const BIGNUM *p,int nchecks, BN_CTX *ctx, BN_GENCB *cb); \& \& int BN_is_prime_fasttest_ex(const BIGNUM *p,int nchecks, BN_CTX *ctx, \& int do_trial_division, BN_GENCB *cb); \& \& int BN_GENCB_call(BN_GENCB *cb, int a, int b); \& \& #define BN_GENCB_set_old(gencb, callback, cb_arg) ... \& \& #define BN_GENCB_set(gencb, callback, cb_arg) ... .Ve .PP Deprecated: .PP .Vb 2 \& BIGNUM *BN_generate_prime(BIGNUM *ret, int num, int safe, BIGNUM *add, \& BIGNUM *rem, void (*callback)(int, int, void *), void *cb_arg); \& \& int BN_is_prime(const BIGNUM *a, int checks, void (*callback)(int, int, \& void *), BN_CTX *ctx, void *cb_arg); \& \& int BN_is_prime_fasttest(const BIGNUM *a, int checks, \& void (*callback)(int, int, void *), BN_CTX *ctx, void *cb_arg, \& int do_trial_division); .Ve .SH "DESCRIPTION" .IX Header "DESCRIPTION" \&\fIBN_generate_prime_ex()\fR generates a pseudo-random prime number of bit length \fBbits\fR. If \fBret\fR is not \fB\s-1NULL\s0\fR, it will be used to store the number. .PP If \fBcb\fR is not \fB\s-1NULL\s0\fR, it is used as follows: .IP "\(bu" 4 \&\fBBN_GENCB_call(cb, 0, i)\fR is called after generating the i\-th potential prime number. .IP "\(bu" 4 While the number is being tested for primality, \&\fBBN_GENCB_call(cb, 1, j)\fR is called as described below. .IP "\(bu" 4 When a prime has been found, \fBBN_GENCB_call(cb, 2, i)\fR is called. .PP The prime may have to fulfill additional requirements for use in Diffie-Hellman key exchange: .PP If \fBadd\fR is not \fB\s-1NULL\s0\fR, the prime will fulfill the condition p % \fBadd\fR == \fBrem\fR (p % \fBadd\fR == 1 if \fBrem\fR == \fB\s-1NULL\s0\fR) in order to suit a given generator. .PP If \fBsafe\fR is true, it will be a safe prime (i.e. a prime p so that (p\-1)/2 is also prime). .PP The \s-1PRNG\s0 must be seeded prior to calling \fIBN_generate_prime_ex()\fR. The prime number generation has a negligible error probability. .PP \&\fIBN_is_prime_ex()\fR and \fIBN_is_prime_fasttest_ex()\fR test if the number \fBp\fR is prime. The following tests are performed until one of them shows that \&\fBp\fR is composite; if \fBp\fR passes all these tests, it is considered prime. .PP \&\fIBN_is_prime_fasttest_ex()\fR, when called with \fBdo_trial_division == 1\fR, first attempts trial division by a number of small primes; if no divisors are found by this test and \fBcb\fR is not \fB\s-1NULL\s0\fR, \&\fBBN_GENCB_call(cb, 1, \-1)\fR is called. If \fBdo_trial_division == 0\fR, this test is skipped. .PP Both \fIBN_is_prime_ex()\fR and \fIBN_is_prime_fasttest_ex()\fR perform a Miller-Rabin probabilistic primality test with \fBnchecks\fR iterations. If \&\fBnchecks == BN_prime_checks\fR, a number of iterations is used that yields a false positive rate of at most 2^\-80 for random input. .PP If \fBcb\fR is not \fB\s-1NULL\s0\fR, \fBBN_GENCB_call(cb, 1, j)\fR is called after the j\-th iteration (j = 0, 1, ...). \fBctx\fR is a pre-allocated \fB\s-1BN_CTX\s0\fR (to save the overhead of allocating and freeing the structure in a loop), or \fB\s-1NULL\s0\fR. .PP BN_GENCB_call calls the callback function held in the \fB\s-1BN_GENCB\s0\fR structure and passes the ints \fBa\fR and \fBb\fR as arguments. There are two types of \&\fB\s-1BN_GENCB\s0\fR structure that are supported: \*(L"new\*(R" style and \*(L"old\*(R" style. New programs should prefer the \*(L"new\*(R" style, whilst the \*(L"old\*(R" style is provided for backwards compatibility purposes. .PP For \*(L"new\*(R" style callbacks a \s-1BN_GENCB\s0 structure should be initialised with a call to BN_GENCB_set, where \fBgencb\fR is a \fB\s-1BN_GENCB\s0 *\fR, \fBcallback\fR is of type \fBint (*callback)(int, int, \s-1BN_GENCB\s0 *)\fR and \fBcb_arg\fR is a \fBvoid *\fR. \&\*(L"Old\*(R" style callbacks are the same except they are initialised with a call to BN_GENCB_set_old and \fBcallback\fR is of type \&\fBvoid (*callback)(int, int, void *)\fR. .PP A callback is invoked through a call to \fBBN_GENCB_call\fR. This will check the type of the callback and will invoke \fBcallback(a, b, gencb)\fR for new style callbacks or \fBcallback(a, b, cb_arg)\fR for old style. .PP BN_generate_prime (deprecated) works in the same way as BN_generate_prime_ex but expects an old style callback function directly in the \fBcallback\fR parameter, and an argument to pass to it in the \fBcb_arg\fR. Similarly BN_is_prime and BN_is_prime_fasttest are deprecated and can be compared to BN_is_prime_ex and BN_is_prime_fasttest_ex respectively. .SH "RETURN VALUES" .IX Header "RETURN VALUES" \&\fIBN_generate_prime_ex()\fR return 1 on success or 0 on error. .PP \&\fIBN_is_prime_ex()\fR, \fIBN_is_prime_fasttest_ex()\fR, \fIBN_is_prime()\fR and \&\fIBN_is_prime_fasttest()\fR return 0 if the number is composite, 1 if it is prime with an error probability of less than 0.25^\fBnchecks\fR, and \&\-1 on error. .PP \&\fIBN_generate_prime()\fR returns the prime number on success, \fB\s-1NULL\s0\fR otherwise. .PP Callback functions should return 1 on success or 0 on error. .PP The error codes can be obtained by \fIERR_get_error\fR\|(3). .SH "SEE ALSO" .IX Header "SEE ALSO" \&\fIopenssl_bn\fR\|(3), \fIERR_get_error\fR\|(3), \fIopenssl_rand\fR\|(3) .SH "HISTORY" .IX Header "HISTORY" The \fBcb_arg\fR arguments to \fIBN_generate_prime()\fR and to \fIBN_is_prime()\fR were added in SSLeay 0.9.0. The \fBret\fR argument to \fIBN_generate_prime()\fR was added in SSLeay 0.9.1. \&\fIBN_is_prime_fasttest()\fR was added in OpenSSL 0.9.5.