[index]
Algebra::Polynomial.convert_to(ring)
Algebra::Polynomial#value_on(ring)
Returns the ring converted to ring of Algebra::MPolynomial.
Example:
require "m-polynomial" require "polynomial" P = Algebra::Polynomial(Integer, "x", "y", "z") x, y, z = P.vars f = x**2 + y**2 + z**2 - x*y - y*z - z*x MP = P.convert_to(Algebra::MPolynomial) p f = f.value_on(MP) #=> z^2 - zy - zx + y^2 - yx + x^2 x, y, z = MP.vars p f == x**2 + y**2 + z**2 - x*y - y*z - z*x #=> true
Algebra::MPolynomial.convert_to(ring)
Algebra::MPolynomial#value_on(ring)
Returns the ring converted to ring of Algebra::Polynomial.
Example:
require "m-polynomial" require "polynomial" MP = Algebra::MPolynomial(Integer, "x", "y", "z") x, y, z = MP.vars f = x**2 + y**2 + z**2 - x*y - y*z - z*x P = MP.convert_to(Algebra::Polynomial) p f = f.value_on(P) #=> x^2 + (-y - z)x + y^2 - zy + z^2 x, y, z = P.vars p f == x**2 + y**2 + z**2 - x*y - y*z - z*x #=> true