#include <dune/fem/quadrature/quadratureimp.hh>
◆ CoordinateType
template<class ct , int dim>
◆ ElementCoordinateType
◆ FieldType
◆ anonymous enum
to be revised, look at caching quad
◆ anonymous enum
template<class ct , int dim>
◆ TestQuadrature()
template<class ct , int dim>
◆ addQuadraturePoint()
Adds a point-weight pair to the quadrature.
This method allows derived classes to add quadrature points (and their respective weights) to the list. This mehtod should only be used within the constructor of the derived class.
◆ geometryType()
template<class ct , int dim>
◆ id()
obtain the identifier of the integration point list
The identifier of an integration point list must be globally unique. Even integration point lists for different dimensions must have different identifiers.
- Note
- Quadratures are considered distinct if they differ in one of the following points: geometry type, order, dimension or implementation.
- Returns
- globally unique identifier of the integration point list
◆ interpolationPoints()
returns list of element interpolation points for a given face quadrature
◆ isFaceInterpolationQuadrature()
return true if quadrature is also a set of interpolation points for a given number of shape functions
◆ maxOrder()
template<class ct , int dim>
◆ newQuadraturePoint()
template<class ct , int dim>
Adds new quadrature point/weight pair.
◆ nop()
obtain the number of integration points
- Returns
- number of integration points within this list
◆ order()
template<class ct , int dim>
◆ point()
obtain coordinates of i-th integration point
This method returns a reference to the coordinates of the i-th integration point for 0 <= i < nop(). The integration point is given in local coordinates, i.e., coordinates with respect to the reference element.
- Parameters
-
[in] | i | number of the integration point, 0 <= i < nop() |
- Returns
- reference to i-th integration point
◆ setIntegrationPoints()
Overwrites integration point list
◆ weight()
obtain weight of i-th integration point
This method returns the weight of the i-th integration point for 0 <= i < nop() within the quadrature.
- Note
- The integration point can be obtained via the point() method.
-
The quadrature weights sum up to the volume of the reference element.
- Parameters
-
[in] | i | number of the integration point, 0 <= i < nop() |
- Returns
- weight of the i-th integration point
◆ dimension
◆ id_
◆ points_
|
mutableprotectedinherited |
◆ weights_
|
mutableprotectedinherited |
The documentation for this class was generated from the following files: